Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(17): e112847, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37365982

RESUMEN

The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.


Asunto(s)
Mitosis , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Cromatina , Encéfalo/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
2.
ACS Synth Biol ; 11(7): 2229-2237, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797032

RESUMEN

Rapid and flexible plasmid construct generation at scale is one of the most limiting first steps in drug discovery projects. These hurdles can partly be overcome by adopting modular DNA design principles, automated sequence fragmentation, and plasmid assembly. To this end we have designed a robust, multimodule golden gate based cloning platform for construct generation with a wide range of applications. The assembly efficiency of the system was validated by splitting sfGFP and sfCherry3C cassettes and expressing them in E. coli followed by fluorometric assessment. To minimize timelines and cost for complex constructs, we developed a software tool named FRAGLER (FRAGment recycLER) that performs codon optimization, multiple sequence alignment, and automated generation of fragments for recycling. To highlight the flexibility and robustness of the platform, we (i) generated plasmids for SarsCoV2 protein reagents, (ii) automated and parallelized assemblies, and (iii) built modular libraries of chimeric antigen receptors (CARs) variants. Applying the new assembly framework, we have greatly streamlined plasmid construction and increased our capacity for rapid generation of complex plasmids.


Asunto(s)
COVID-19 , Escherichia coli , Clonación Molecular , ADN/genética , Escherichia coli/genética , Vectores Genéticos , Humanos , Plásmidos/genética , ARN Viral , SARS-CoV-2 , Biología Sintética
3.
Elife ; 72018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29911972

RESUMEN

In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.


Asunto(s)
Proliferación Celular , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Células Cultivadas , Fase G1 , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Ratones Endogámicos C57BL , Proteínas Represoras/genética , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética
4.
J Cell Biol ; 216(8): 2259-2271, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28684425

RESUMEN

The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation.


Asunto(s)
Núcleo Celular/enzimología , Segregación Cromosómica , Replicación del ADN , ADN/biosíntesis , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis , Ubiquitinación
5.
Biochem J ; 473(14): 2225-37, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27208169

RESUMEN

Transthyretin amyloidosis (ATTR) belongs to a class of disorders caused by protein misfolding and aggregation. ATTR is a disabling disorder of autosomal dominant trait, where transthyretin (TTR) forms amyloid deposits in different organs, causing dysfunction of the peripheral nervous system. We previously discovered that amyloid fibrils from ATTR patients are glycated by methylglyoxal. Even though no consensus has been reached about the actual role of methylglyoxal-derived advanced glycation end-products in amyloid diseases, evidence collected so far points to a role for protein glycation in conformational abnormalities, being ubiquitously found in amyloid deposits in Alzheimer's disease, dialysis-related amyloidosis and Parkinson's diseases. Human fibrinogen, an extracellular chaperone, was reported to specifically interact with a wide spectrum of stressed proteins and suppress their aggregation, being an interacting protein with TTR. Fibrinogen is differentially glycated in ATTR, leading to its chaperone activity loss. Here we show the existence of a proteostasis imbalance in ATTR linked to fibrinogen glycation by methylglyoxal.


Asunto(s)
Neuropatías Amiloides Familiares/metabolismo , Fibrinógeno/química , Fibrinógeno/metabolismo , Amiloide/metabolismo , Glicosilación , Humanos , Espectrometría de Masas , Microscopía de Fuerza Atómica , Chaperonas Moleculares/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Curr Biol ; 26(9): 1127-37, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27112295

RESUMEN

Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Centriolos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteína Quinasa CDC2/genética , Ciclo Celular/fisiología , Clonación Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Xenopus
7.
Dev Cell ; 35(2): 222-35, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26481051

RESUMEN

Centrioles are essential for cilia and centrosome assembly. In centriole-containing cells, centrioles always form juxtaposed to pre-existing ones, motivating a century-old debate on centriole biogenesis control. Here, we show that trans-autoactivation of Polo-like kinase 4 (PLK4), the trigger of centriole biogenesis, is a critical event in the spatial control of that process. We demonstrate that centrioles promote PLK4 activation through its recruitment and local accumulation. Though centriole removal reduces the proportion of active PLK4, this is rescued by concentrating PLK4 to the peroxisome lumen. Moreover, while mild overexpression of PLK4 only triggers centriole amplification at the existing centriole, higher PLK4 levels trigger both centriolar and cytoplasmatic (de novo) biogenesis. Hence, centrioles promote their assembly locally and disfavor de novo synthesis. Similar mechanisms enforcing the local concentration and/or activity of other centriole components are likely to contribute to the spatial control of centriole biogenesis under physiological conditions.


Asunto(s)
Centriolos/genética , Proteínas de Drosophila/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Espermatogénesis/genética , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Peroxisomas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
8.
PLoS One ; 10(7): e0125392, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147092

RESUMEN

Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis.


Asunto(s)
Neuropatías Amiloides Familiares/metabolismo , Chaperonas Moleculares/metabolismo , Adulto , Secuencia de Aminoácidos , Neuropatías Amiloides Familiares/sangre , Proteínas Sanguíneas/química , Estudios de Casos y Controles , Electroforesis en Gel Bidimensional , Femenino , Humanos , Datos de Secuencia Molecular , Proteolisis , Proteómica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
J Cell Sci ; 128(9): 1732-45, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795299

RESUMEN

The mitotic spindle drives chromosome movement during mitosis and attaches to chromosomes at dedicated genomic loci named centromeres. Centromeres are epigenetically specified by their histone composition, namely the presence of the histone H3 variant CENP-A, which is regulated during the cell cycle by its dynamic expression and localization. Here, we combined biochemical methods and quantitative imaging approaches to investigate a new function of CUL4-RING E3 ubiquitin ligases (CRL4) in regulating CENP-A dynamics. We found that the core components CUL4 and DDB1 are required for centromeric loading of CENP-A, but do not influence CENP-A maintenance or pre-nucleosomal CENP-A levels. Interestingly, we identified RBBP7 as a substrate-specific CRL4 adaptor required for this process, in addition to its role in binding and stabilizing soluble CENP-A. Our data thus suggest that the CRL4 complex containing RBBP7 (CRL4(RBBP7)) might regulate mitosis by promoting ubiquitin-dependent loading of newly synthesized CENP-A during the G1 phase of the cell cycle.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteína 7 de Unión a Retinoblastoma/metabolismo , Proteína A Centromérica , Proteínas de Unión al ADN/metabolismo , Humanos , Mitosis , Unión Proteica , Estabilidad Proteica , Proteína 4 de Unión a Retinoblastoma/metabolismo
10.
Curr Biol ; 23(22): 2245-2254, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24184099

RESUMEN

Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/ßTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/ßTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/ßTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/ßTrCP regulation as it operates in both soma and germline. As ßTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.


Asunto(s)
Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Treonina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Amyloid ; 19(2): 74-80, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22591216

RESUMEN

Familial transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the formation of transthyretin (TTR) amyloid deposits. This crippling and fatal disease is associated with point mutations in TTR, a protein mainly produced in the liver. Hence, liver transplantation is the only treatment capable of halting disease progression. Ideally, liver transplantation should be performed as early as possible in the disease course before significant neurologic disability has been incurred. Early detection of disease before serious pathological lesions occur is crucial for the clinical management of patients and for morbidity delay. Unfortunately, the presence of TTR mutations by itself is not a predictor of disease onset or progression. In the present work, we observed an increased oligomerization of α-synuclein in the saliva of ATTR symptomatic individuals comparatively to asymptomatic carriers of the same TTR mutation and healthy control subjects. Based on this observation, we propose monitoring α-synuclein oligomers in saliva as a biomarker of ATTR progression. Since α-synuclein plays a major role in several neurodegenerative disorders, assessing its oligomerization state in this fluid provides a non-invasive approach to survey these pathologies.


Asunto(s)
Amiloide/metabolismo , Amiloidosis Familiar/metabolismo , Prealbúmina/metabolismo , Saliva/metabolismo , alfa-Sinucleína/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Amiloidosis Familiar/genética , Amiloidosis Familiar/patología , Amiloidosis Familiar/cirugía , Biomarcadores/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Heterocigoto , Humanos , Trasplante de Hígado , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Mapeo Peptídico , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven , alfa-Sinucleína/química , alfa-Sinucleína/aislamiento & purificación
12.
Amyloid ; 18(4): 191-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22080762

RESUMEN

Familial transthyretin amyloidosis (ATTR) is a fatal autosomal dominant disease characterized by the formation of amyloid fibers, mainly composed of transthyretin (TTR). Protein aggregation and amyloid fiber formation are considered concentration dependent processes and since most ATTR patients are heterozygous it is crucial to determine the ratio between mutant and non-mutant TTR forms in human plasma. Using a high resolution mass spectrometry based approach we determined the ratio of TTR forms in ATTR patients, V30M mutation carriers, symptomatic and asymptomatic ones, as well as ATTR patients that received a wild type cadaveric liver transplant. Domino transplanted patients that received a liver from an ATTR patient were also investigated. We found that although wild type TTR is diminished in the plasma of non-transplanted ATTR patients comparatively to healthy subjects, the relationship with the V30M variant does not change with illness progression. Those who received a wild type liver showed no mutant protein while domino transplanted patients presented the same relative amount of V30M as found in asymptomatic and symptomatic individuals. The V30M to wild type TTR ratio in plasma is the same for all ATTR patients studied, showing no variation with disease clinical progression. Our results point to the involvement of additional non-genetic factors on the pathogenesis of this disease.


Asunto(s)
Amiloide/sangre , Amiloidosis Familiar/sangre , Análisis de Fourier , Adulto , Secuencia de Aminoácidos , Amiloide/genética , Amiloidosis Familiar/genética , Amiloidosis Familiar/cirugía , Humanos , Trasplante de Hígado , Persona de Mediana Edad , Peso Molecular , Fragmentos de Péptidos/química , Mutación Puntual , Prealbúmina/genética , Estructura Cuaternaria de Proteína , Receptor para Productos Finales de Glicación Avanzada/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...