Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Neurobiol ; 83(1-2): 40-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373424

RESUMEN

Neurodevelopmental disorders such as schizophrenia and autism are thought to involve an imbalance of excitatory and inhibitory signaling in the brain. Intrauterine growth restriction (IUGR) is a risk factor for these disorders, with IUGR onset occurring during critical periods of neurodevelopment. The aim of this study was to determine the impact of IUGR on excitatory and inhibitory neurons of the fetal neocortex and hippocampus. Fetal brains (n = 2) were first collected from an unoperated pregnant guinea pig at mid-gestation (32 days of gestation [dg]; term ∼67 dg) to visualize excitatory (Ctip2) and inhibitory (calretinin [CR] and somatostatin [SST]) neurons via immunohistochemistry. Chronic placental insufficiency (CPI) was then induced via radial artery ablation at 30 dg in another cohort of pregnant guinea pigs (n = 8) to generate IUGR fetuses (52 dg; n = 8); control fetuses (52 dg; n = 7) were from sham surgeries with no radial artery ablation. At 32 dg, Ctip2- and CR-immunoreactive (IR) cells had populated the cerebral cortex, whereas SST-IR cells had not, suggesting these neurons were yet to complete migration. At 52 dg, in IUGR versus control fetuses, there was a reduction in SST-IR cell density in the cerebral cortex (p = .0175) and hilus of the dentate gyrus (p = .0035) but not the striatum (p > .05). There was no difference between groups in the density of Ctip2-IR (cortex) or CR-IR (cortex, hippocampus) neurons (p > 0.05). Thus, we propose that an imbalance in inhibitory (SST-IR) and excitatory (Ctip2-IR) neurons in the IUGR fetal guinea pig brain could lead to excitatory/inhibitory dysfunction commonly seen in neurodevelopmental disorders such as autism and schizophrenia.


Asunto(s)
Trastorno Autístico , Esquizofrenia , Animales , Femenino , Cobayas , Embarazo , Encéfalo , Retardo del Crecimiento Fetal , Neuronas , Placenta
2.
Biol Psychiatry ; 93(6): 575-585, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36481064

RESUMEN

BACKGROUND: Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS: Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS: At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS: Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.


Asunto(s)
Problema de Conducta , Sustancia Blanca , Recién Nacido , Lactante , Humanos , Niño , Adolescente , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Recien Nacido Extremadamente Prematuro , Imagen de Difusión por Resonancia Magnética/métodos , Factores de Riesgo
3.
Psychol Med ; 53(3): 759-770, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34105450

RESUMEN

BACKGROUND: Children born very preterm (VP) display altered growth in corticolimbic structures compared with full-term peers. Given the association between the cortiocolimbic system and anxiety, this study aimed to compare developmental trajectories of corticolimbic regions in VP children with and without anxiety diagnosis at 13 years. METHODS: MRI data from 124 VP children were used to calculate whole brain and corticolimbic region volumes at term-equivalent age (TEA), 7 and 13 years. The presence of an anxiety disorder was assessed at 13 years using a structured clinical interview. RESULTS: VP children who met criteria for an anxiety disorder at 13 years (n = 16) displayed altered trajectories for intracranial volume (ICV, p < 0.0001), total brain volume (TBV, p = 0.029), the right amygdala (p = 0.0009) and left hippocampus (p = 0.029) compared with VP children without anxiety (n = 108), with trends in the right hippocampus (p = 0.062) and left medial orbitofrontal cortex (p = 0.079). Altered trajectories predominantly reflected slower growth in early childhood (0-7 years) for ICV (ß = -0.461, p = 0.020), TBV (ß = -0.503, p = 0.021), left (ß = -0.518, p = 0.020) and right hippocampi (ß = -0.469, p = 0.020) and left medial orbitofrontal cortex (ß = -0.761, p = 0.020) and did not persist after adjusting for TBV and social risk. CONCLUSIONS: Region- and time-specific alterations in the development of the corticolimbic system in children born VP may help to explain an increase in anxiety disorders observed in this population.


Asunto(s)
Trastornos de Ansiedad , Recien Nacido Extremadamente Prematuro , Lóbulo Límbico , Corteza Prefrontal , Adolescente , Niño , Femenino , Humanos , Recién Nacido , Masculino , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/epidemiología , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Entrevista Psicológica , Lóbulo Límbico/diagnóstico por imagen , Lóbulo Límbico/crecimiento & desarrollo , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/crecimiento & desarrollo , Estudios Prospectivos , Estudios Longitudinales
4.
Brain Cogn ; 160: 105875, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462081

RESUMEN

Very preterm birth (VP; <32 weeks' gestation) is associated with altered brain gray matter development and lower math ability. In typically developing children, the neural correlates of math ability may change dynamically with age, though evidence in VP children is limited. In a prospective longitudinal cohort of children born VP and full term (FT), we aimed to investigate associations between 1) concurrent regional brain volumes and math ability at 7 (n = 148 VP; n = 34 FT) and 13-years (n = 130 VP; n = 46 FT), and 2) regional volumetric growth across childhood (term-equivalent age (TEA) to 7-years; 7 to 13-years) and math ability from 7 to 13-years, and improvement in ability from 7 to 13 years. For both aims we investigated whether associations differed between birth groups. Cross-sectionally, frontal, temporal and subcortical regional volumes were positively associated with math ability for both birth groups. For FT children, greater growth of specific temporal regions was associated with higher math ability, and greater improvements. For VP children, similar associations were only observed for growth from TEA to 7-years with 13-year ability and improvements in ability. In conclusion, VP birth appears to alter associations of brain development across the first 13 years with childhood math ability.


Asunto(s)
Sustancia Gris , Nacimiento Prematuro , Encéfalo/diagnóstico por imagen , Niño , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Imagen por Resonancia Magnética , Estudios Prospectivos
5.
Artículo en Inglés | MEDLINE | ID: mdl-34655805

RESUMEN

BACKGROUND: Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS: Structural and diffusion magnetic resonance imaging data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP: 72; FT: 17) and 13 (VP: 125; FT: 44) years. Internalizing and externalizing symptoms were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS: Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP group and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing symptoms differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS: This study provides insights into the neurobiological basis of emotional and behavioral problems after preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.


Asunto(s)
Conectoma , Nacimiento Prematuro , Problema de Conducta , Adolescente , Niño , Imagen de Difusión por Resonancia Magnética , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido
6.
J Child Psychol Psychiatry ; 62(11): 1339-1352, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34426966

RESUMEN

BACKGROUND: Research on monogenic forms of autism spectrum disorder (autism) can inform our understanding of genetic contributions to the autism phenotype; yet, there is much to be learned about the pathways from gene to brain structure to behavior. This systematic review summarizes and evaluates research on brain magnetic resonance imaging (MRI) findings in monogenic conditions that have strong association with autism. This will improve understanding of the impact of genetic variability on brain structure and related behavioral traits in autism. METHODS: The search strategy for this systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Risk of bias (ROB) assessment was completed on included studies using the Newcastle-Ottawa Scales. RESULTS: Of 4,287 studies screened, 69 were included pertaining to 13 of the top 20 genes with the strongest association with autism. The greatest number of studies related to individuals with PTEN variants and autism. Brain MRI abnormalities were reported for 12 of the 13 genes studied, and in 51.7% of participants across all 13 genes, including 100% of participants with ARID1B variants. Specific MRI findings were highly variable, with no clear patterns emerging within or between the 13 genes, although white matter abnormalities were the most common. Few studies reported specific details about methods for acquisition and processing of brain MRI, and descriptors for brain abnormalities were variable. ROB assessment indicated high ROB for all studies, largely due to small sample sizes and lack of comparison groups. CONCLUSIONS: Brain abnormalities are common in this population of individuals, in particular, children; however, a range of different brain abnormalities were reported within and between genes. Directions for future neuroimaging research in monogenic autism are suggested.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen
7.
Hippocampus ; 31(3): 321-334, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33320965

RESUMEN

Intrauterine growth restriction (IUGR) is associated with hippocampal alterations that can increase the risk of short-term memory impairments later in life. Despite the role of hippocampal neurogenesis in learning and memory, research into the long-lasting impact of IUGR on these processes is limited. We aimed to determine the effects of IUGR on neuronal proliferation, differentiation and morphology, and on memory function at adolescent equivalent age. At embryonic day (E) 18 (term ∼E22), placental insufficiency was induced in pregnant Wistar rats via bilateral uterine vessel ligation to generate IUGR offspring (n = 10); control offspring (n = 11) were generated via sham surgery. From postnatal day (P) 36-44, spontaneous location recognition (SLR), novel object location and recognition (NOL, NOR), and open field tests were performed. Brains were collected at P45 to assess neurogenesis (immunohistochemistry), dendritic morphology (Golgi staining), and brain-derived neurotrophic factor expression (BDNF; Western blot analysis). In IUGR versus control rats there was no difference in object preference in the NOL or NOR, the similar and dissimilar condition of the SLR task, or in locomotion and anxiety-like behavior in the open field. There was a significant increase in the linear density of immature neurons (DCX+) in the subgranular zone (SGZ) of the dentate gyrus (DG), but no difference in the linear density of proliferating cells (Ki67+) in the SGZ, nor in areal density of mature neurons (NeuN+) or microglia (Iba-1+) in the DG in IUGR rats compared to controls. Dendritic morphology of dentate granule cells did not differ between groups. Protein expression of the BDNF precursor (pro-BDNF), but not mature BDNF, was increased in the hippocampus of IUGR compared with control rats. These findings highlight that while the long-lasting prenatal hypoxic environment may impact brain development, it may not impact hippocampal-dependent learning and memory in adolescence.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Animales , Giro Dentado , Femenino , Retardo del Crecimiento Fetal/metabolismo , Hipocampo/metabolismo , Neurogénesis/fisiología , Embarazo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...