Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2919, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316906

RESUMEN

This study examines sub-seasonal precipitation anomalies, challenging to predict yet vital for society and the environment. Focusing on October, we investigate correlations between the Indian Ocean Dipole Mode Index (DMI), West Tropical Indian Ocean Index (WTIO), and Middle Eastern precipitation. We find robust correlations (~ 0.7), up to a two-month lag, demonstrating strong links between these climate indices and rainfall patterns, potentially suggesting sub-seasonal precipitation predictability. Over the past four decades, DMI and WTIO have shown a significant upward trend of ~ 0.4 °C, intensifying their impact on precipitation dynamics. This trend signifies evolving Indian Ocean climate patterns with potential regional consequences and is projected to continue in the twenty-first century. Significant correlations also emerge between DMI, WTIO, and maximum daily precipitation, highlighting their role in extreme rainfall events. Finally, our study attributes most of October's precipitation variability to Indian Ocean sea surface temperature variations. These temperature anomalies influence the Indian Ocean's Walker circulation, affecting water vapor flux to the Middle East and shaping regional precipitation. Our findings underscore the importance of these indices in understanding and predicting Middle East climate variability, revealing intricate ocean-atmosphere interactions.

2.
Nat Commun ; 14(1): 5193, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626029

RESUMEN

The Cretaceous 'greenhouse' period (~145 to ~66 million years ago, Ma) in Earth's history is relatively well documented by multiple paleoproxy records, which indicate that the meridional sea surface temperature (SST) gradient increased (non-monotonically) from the Valanginian (~135 Ma) to the Maastrichtian (~68 Ma). Changes in atmospheric CO2 concentration, solar constant, and paleogeography are the primary drivers of variations in the spatiotemporal distribution of SST. However, the particular contribution of each of these drivers (and their underlying mechanisms) to changes in the SST distribution remains poorly understood. Here we use data from a suite of paleoclimate simulations to compare the relative effects of atmospheric CO2 variability and paleogeographic changes on mid-latitudinal SST gradient through the Cretaceous. Further, we use a fundamental model of wind-driven ocean gyres to quantify how changes in the Northern Hemisphere paleogeography weaken the circulation in subtropical ocean gyres, leading to an increase in extratropical SSTs.

3.
J Theor Biol ; 439: 76-85, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29154908

RESUMEN

Larvae of coastal-marine fishes have been shown repeatedly to swim directionally in the pelagic environment. Yet, biophysical models of larval dispersal typically impose a Simple Random Walk (SRW) algorithm to simulate non-directional movement in the open ocean. Here we investigate the use of a Correlated Random Walk (CRW) algorithm; imposing auto-correlated directional swimming onto simulated larvae within a high-resolution 3D biophysical model of the Gulf of Aqaba, the Red Sea. Our findings demonstrate that implementation of auto-correlated directional swimming can result in an increase of up to ×2.7 in the estimated success rate of larval-settlement, as well as an increase in the extent of connectivity. With accumulating empirical support for the capacity for directional-swimming during the pelagic phase, we propose that CRW should be applied in biophysical models of dispersal by coastal marine fish-larvae.


Asunto(s)
Larva/fisiología , Modelos Biológicos , Orientación , Natación , Algoritmos , Animales , Conducta Animal , Peces , Movimiento , Distribución Aleatoria
4.
Glob Chang Biol ; 19(12): 3640-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23959950

RESUMEN

The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Selección Genética , Animales , Antozoos/genética , Antozoos/crecimiento & desarrollo , Calor , Océano Índico , Israel , Larva/genética , Larva/fisiología , Dinámica Poblacional , Estaciones del Año
5.
Nature ; 495(7439): 90-3, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23467167

RESUMEN

Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.


Asunto(s)
Planeta Tierra , Cubierta de Hielo , Agua de Mar , Nieve , Movimientos del Agua , Atmósfera , Historia Antigua , Modelos Teóricos , Océanos y Mares , Fotosíntesis , Salinidad , Agua de Mar/análisis , Agua de Mar/química , Temperatura
6.
J Theor Biol ; 314: 145-56, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23010177

RESUMEN

We have studied the effects of seasonal Solar Radiation Forcing (SRF) on the climate self-regulatory capability of life, using a latitudinal-dependent Daisyworld model. Because the seasonal polarity of SRF increases poleward, habitable conditions exist in the equatorial regions year round, whereas, in the high latitudes, harsh winters cause annual extinction of life, and only the summers are inhabited or regulated by life. Seasonality affects climate regulation by two major mechanisms: (1) the cold winter conditions in the high latitudes reduce the global temperature below the optimal temperature; (2) during summer, life experiences higher SRF anomalies and, therefore, shifts to higher albedo when compared to annual mean SRF. In turn, a full capacity for temperature regulation is reached at lower SRF, and the range of SRF over which life regulates climate is significantly reduced. Lastly, initiation/extinction of life at low/highly-perturbed SRF occurs at the poles. Therefore, an irreversible global extinction occurs once life passes its regulatory capacity in the poles. We conduct extensive sensitivity analyses on various model parameters (latitudinal heat diffusion, heat capacity, and population death rate), strengthening the generality/robustness of the above net seasonal effects. Applications to other SRF fluctuation, as Milankovitch cycles are discussed.


Asunto(s)
Modelos Teóricos , Estaciones del Año , Difusión , Planeta Tierra , Calor , Ranunculaceae/fisiología , Luz Solar , Temperatura , Factores de Tiempo
7.
Philos Trans A Math Phys Eng Sci ; 361(1810): 1935-42; discussion 1942-4, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-14558902

RESUMEN

We propose that past abrupt climate changes were probably a result of rapid and extensive variations in sea-ice cover. We explain why this seems a perhaps more likely explanation than a purely thermohaline circulation mechanism. We emphasize that because of the significant influence of sea ice on the climate system, it seems that high priority should be given to developing ways for reconstructing high-resolution (in space and time) sea-ice extent for past climate-change events. If proxy data can confirm that sea ice was indeed the major player in past abrupt climate-change events, it seems less likely that such dramatic abrupt changes will occur due to global warming, when extensive sea-ice cover will not be present.


Asunto(s)
Clima Frío , Hielo , Periodicidad , Agua de Mar , Clima , Evolución Planetaria , Efecto Invernadero , Océanos y Mares , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...