Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anal Chem ; 96(15): 5869-5877, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38561318

RESUMEN

Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and in vivo IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Péptidos/química
2.
Mol Ther Methods Clin Dev ; 31: 101142, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027055

RESUMEN

Studies of recombinant adeno-associated virus (rAAV) revealed the mixture of full particles with different densities in rAAV. There are no conclusive results because of the lack of quantitative stoichiometric viral proteins, encapsidated DNA, and particle level analyses. We report the first comprehensive characterization of low- and high-density rAAV serotype 2 particles. Capillary gel electrophoresis showed high-density particles possessing a designed DNA encapsidated in the capsid composed of (VP1 + VP2)/VP3 = 0.27, whereas low-density particles have the same DNA but with a different capsid composition of (VP1 + VP2)/VP3 = 0.31, supported by sedimentation velocity-analytical ultracentrifugation and charge detection-mass spectrometry. In vitro analysis demonstrated that the low-density particles had 8.9% higher transduction efficacy than that of the particles before fractionation. Further, based on our recent findings of VP3 clip, we created rAAV2 single amino acid variants of the transcription start methionine of VP3 (M203V) and VP3 clip (M211V). The rAAV2-M203V variant had homogeneous particles with higher (VP1+VP2)/VP3 values (0.35) and demonstrated 24.7% higher transduction efficacy compared with the wild type. This study successfully provided highly functional rAAV by the extensive fractionation from the mixture of rAAV2 full particles or by the single amino acid replacement.

3.
Anal Chem ; 93(49): 16379-16384, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34842410

RESUMEN

The identification and localization of isomeric peptide modifications is a critical requirement of the biopharmaceutical industry. Despite the ability of liquid chromatography-mass spectrometry to identify many of the common post translational modifications, the identification of isobaric or racemized peptides is confounded by modern mass spectrometry-based techniques. Here, we present a novel approach combining liquid chromatography with a high-resolution ion mobility mass spectrometry system to differentiate peptide and peptide fragments based upon their mobility and mass.


Asunto(s)
Productos Biológicos , Cromatografía Liquida , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Péptidos
4.
J Am Soc Mass Spectrom ; 32(10): 2505-2512, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34437803

RESUMEN

Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases, including cancers and immunological disorders. Disulfide bonds play a pivotal role in therapeutic antibody structure and activity relationships. Disulfide connectivity and cysteine-related variants are considered as critical quality attributes that must be monitored during mAb manufacturing and storage, as non-native disulfide bridges and aggregates might be responsible for loss of biological function and immunogenicity. The presence of cysteine residues in the complementarity-determining regions (CDRs) is rare in human antibodies but may be critical for the antigen-binding or deleterious for therapeutic antibody development. Consequently, in-depth characterization of their disulfide network is a prerequisite for mAb developability assessment. Mass spectrometry (MS) techniques represent powerful tools for accurate identification of disulfide connectivity. We report here on the MS-based characterization of an IgG4 comprising two additional cysteine residues in the CDR of its light chain. Classical bottom-up approaches after trypsin digestion first allowed identification of a dipeptide containing two disulfide bridges. To further investigate the conformational heterogeneity of the disulfide-bridged dipeptide, we performed ion mobility spectrometry-mass spectrometry (IMS-MS) experiments. Our results highlight benefits of high resolution IMS-MS to tackle the conformational landscape of disulfide peptides generated after trypsin digestion of a humanized IgG4 mAb under development. By comparing arrival time distributions of the mAb-collected and synthetic peptides, cyclic IMS afforded unambiguous assessment of disulfide bonds. In addition to classical peptide mapping, qualitative high-resolution IMS-MS can be of great interest to identify disulfide bonds within therapeutic mAbs.


Asunto(s)
Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Disulfuros , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Disulfuros/análisis , Disulfuros/química , Humanos , Inmunoglobulina G/química
5.
J Am Soc Mass Spectrom ; 32(6): 1545-1552, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34006100

RESUMEN

Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.


Asunto(s)
Proteína 3 que Contiene Repeticiones IAP de Baculovirus/química , Citocromos c/química , Espectrometría de Masas/métodos , Desplegamiento Proteico , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Citocromos c/metabolismo , Gases/química , Caballos , Humanos , Espectrometría de Movilidad Iónica/métodos , Iones
6.
Anal Chem ; 92(9): 6321-6326, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32271006

RESUMEN

Liquid extraction surface analysis (LESA) is an ambient surface sampling technique that allows the analysis of intact proteins directly from tissue samples via mass spectrometry. Integration of ion mobility separation to LESA mass spectrometry workflows has shown significant improvements in the signal-to-noise ratios of the resulting protein mass spectra and hence the number of proteins detected. Here, we report the use of a quadrupole-cyclic ion mobility-time-of-flight mass spectrometer (Q-cIM-ToF) for the analysis of proteins from mouse brain and rat kidney tissues sampled via LESA. Among other features, the instrument allows multiple pass cyclic ion mobility separation, with concomitant increase in resolving power. Single-pass experiments enabled the detection of 30 proteins from mouse brain tissue, rising to 44 when quadrupole isolation was employed. In the absence of ion mobility separation, 21 proteins were detected in rat kidney tissue including the abundant α- and ß-globin chains from hemoglobin. Single-pass cyclic ion mobility mass spectrometry enabled the detection of 60 additional proteins. Multipass experiments of a narrow m/z range (m/z 870-920) resulted in the detection of 24 proteins (one pass), 37 proteins (two passes) and 54 proteins (three passes), thus demonstrating the benefits of improved mobility resolving power.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Proteínas/análisis , Animales , Encéfalo/metabolismo , Hemoglobinas/análisis , Riñón/metabolismo , Extracción Líquido-Líquido , Ratones , Ratas , Propiedades de Superficie
7.
J Am Soc Mass Spectrom ; 31(4): 880-887, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32134265

RESUMEN

The widespread use of traveling wave ion mobility (TWIM) technology in fields such as omics and structural biology motivates efforts to deepen our understanding of ion transport within such devices. Here, we describe a new advancement in TWIM theory, where pseudo-trapping within TW ion guides is characterized in detail. During pseudo-trapping, ions with different mobilities can travel with the same mean velocity, leaving others within the same TWIM experiment to separate as normal. Furthermore, pseudo-trapping limits typical band broadening experienced by ions during TWIM, manifesting as peaks with apparently improved IM resolving power, but all ions that undergo pseudo trapping are unable to separate by IM. SIMION simulations show that ions become locked into a repeated pattern of motion with respect to the TW reference frame during pseudo-trapping. We developed a simplified model capable of reproducing TW pseudo-trapping and reproducing trends observed in experimental data. Our model and simulations suggest that pseudo-trapping occurs only during experiments performed under static TWIM conditions, to an extent that depends on the detailed shape of the traveling wave. We show that pseudo-trapping alters the ion transit times and can adversely affect calibrated CCS measurements. Finally, we provide recommendations for avoiding unintentional pseudo-trapping in TWIM in order to obtain optimal separations and CCS determinations.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Modelos Químicos , Proteínas/química , Citocromos c/química , Iones/química
8.
Anal Chem ; 92(6): 4475-4483, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32048834

RESUMEN

The use of charge-reducing reagents to generate lower-charge ions has gained popularity in the field of native mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS). This is because the lower number of charged sites decreases the propensity for Coulombic repulsions and unfolding/restructuring, helping to preserve the native-like structure. Furthermore, lowering the charge state consequently increases the mass-to-charge values (m/z), effectively increasing spacing between signals originating from small mass differences, such as different proteoforms or protein-drug complexes. IM-MS yields collision cross section (CCS, Ω) values that provide information about the three-dimensional structure of the ion. Traveling wave IM (TWIM) is an established and expanding technique within the native MS field. TWIM measurements require CCS calibration, which is achieved via the use of standard species of known CCS. Current databases for native-like proteins and protein complexes provide CCS values obtained using normal (i.e., non-charge-reducing) conditions. Herein, we explored the validity of using "normal" charge calibrants to calibrate for charge-reduced proteins and show cases where it is not appropriate. Using a custom linear field drift cell that enables the determination of ion mobilities from "first principles", we directly determined CCS values for 19 protein calibrant species under three solution conditions (yielding a broad range of charge states) and two drift gases. This has established a database of CCS and reduced-mobility (K0) values, along with their associated uncertainties, for proteins and protein complexes over a large m/z range. TWIM validation of this database shows improved accuracy over existing methods in calibrating CCS values for charge-reduced proteins.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Calibración , Iones/química , Espectrometría de Masas
9.
Anal Chem ; 91(22): 14268-14274, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31613096

RESUMEN

Mass spectrometry is widely used in studying the structures of compounds present in crude oil. In this study, a novel mass spectrometer incorporating a cyclic ion mobility separator was used to obtain tandem mass spectra of crude oil compounds in a narrow mass-to-charge ratio (m/z) window. Isolation of specific peaks was performed by combining quadrupole and ion mobility separation. As a result, peaks differing by an m/z value of 0.1 could be isolated. Tandem mass spectrometry with collision-induced dissociation was successfully performed to study the chemical structures of the isolated ions. A series of ions ranging from m/z 374 to m/z 384, differing by two hydrogen atoms but with the same number of carbons, were isolated and tandem mass spectra were obtained. The higher m/z precursor ions produced smaller fragment ions; this is explained by the reduced aromaticity owing to an increased number of hydrogen atoms. The ions at m/z 388 and 374, differing by a CH2 group, produced very similar fragmentation patterns. Overall, the data obtained from this study clearly demonstrate that the novel cyclic ion mobility-mass spectrometer is a powerful instrument that can provide tandem mass spectra of individual compounds constituting complex mixtures such as crude oils.

10.
Anal Chem ; 91(18): 12030-12037, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31449397

RESUMEN

Carbohydrate isomers with identical atomic composition cannot be distinguished by mass spectrometry. By separating the ions according to their conformation in the gas phase, ion mobility (IM) coupled to mass spectrometry is an attractive approach to overcome this issue and extend the limits of mass spectrometry in structural glycosciences. Recent technological developments have significantly increased the resolving power of ion mobility separators. One such instrument features a cyclic traveling-wave IM separator integrated in a quadrupole/time-of-flight mass spectrometer. This system allows for multipass ion separations and for pre-, intra-, and post-IM fragmentation. In the present study, we utilize this system to explore a complex mixture of oligoporphyrans derived from the enzymatic digestion of the cell wall of the red alga P. umbilicalis. We are able to deduce their complete structure using IM arrival times and the m/z of specific fragments. This approach was successfully applied for sequencing of oligoporphyrans of up to 1500 Da and included the positioning of the methyl ether and sulfate groups. The structures defined in this study by IM-MS/MS agree with those found in the past but use much more time-consuming analytical approaches. This study also revealed some so far undescribed structures, present at very low abundance. In addition, the results made it possible to compare the abundance of the different isomers released by the enzyme and to draw further conclusions on the specificity of ß-porphyranase and more particularly on its accommodation tolerance of anhydro-bridges in subsites. Finally, a separation of two isomers with very similar mobility was obtained after 58 passes around the cIM, with an estimated resolving power of 920 for these triply charged species, confirming the structures attributed to these two isomers.

11.
Anal Chem ; 91(12): 7554-7561, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117399

RESUMEN

Ion mobility mass spectrometry (IM-MS) allows separation of native protein ions into "conformational families". Increasing the IM resolving power should allow finer structural information to be obtained and can be achieved by increasing the length of the IM separator. This, however, increases the time that protein ions spend in the gas phase and previous experiments have shown that the initial conformations of small proteins can be lost within tens of milliseconds. Here, we report on investigations of protein ion stability using a multipass traveling wave (TW) cyclic IM (cIM) device. Using this device, minimal structural changes were observed for Cytochrome C after hundreds of milliseconds, while no changes were observed for a larger multimeric complex (Concanavalin A). The geometry of the instrument (Q-cIM-ToF) also enables complex tandem IM experiments to be performed, which were used to obtain more detailed collision-induced unfolding pathways for Cytochrome C. The instrument geometry provides unique capabilities with the potential to expand the field of protein analysis via IM-MS.

12.
Anal Chem ; 91(13): 8564-8573, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31141659

RESUMEN

Improvements in the performance and availability of commercial instrumentation have made ion mobility-mass spectrometry (IM-MS) an increasingly popular approach for the structural analysis of ionic species as well as for separation of complex mixtures. Here, a new research instrument is presented which enables complex experiments, extending the current scope of IM technology. The instrument is based on a Waters SYNAPT G2-S i IM-MS platform, with the IM separation region modified to accept a cyclic ion mobility (cIM) device. The cIM region consists of a 98 cm path length, closed-loop traveling wave (TW)-enabled IM separator positioned orthogonally to the main ion optical axis. A key part of this geometry and its flexibility is the interface between the ion optical axis and the cIM, where a planar array of electrodes provides control over the TW direction and subsequent ion motion. On either side of the array, there are ion guides used for injection, ejection, storage, and activation of ions. In addition to single and multipass separations around the cIM, providing selectable mobility resolution, the instrument design and control software enable a range of "multifunction" experiments such as mobility selection, activation, storage, IMS n, and importantly custom combinations of these functions. Here, the design and performance of the cIM-MS instrument is highlighted, with a mobility resolving power of approximately 750 demonstrated for 100 passes around the cIM device using a reverse sequence peptide pair. The multifunction capabilities are demonstrated through analysis of three isomeric pentasaccharide species and the small protein ubiquitin.

13.
J Am Soc Mass Spectrom ; 30(6): 1028-1037, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30977045

RESUMEN

There is increasing biopharmaceutical interest in oligosaccharides and glycosylation. A key requirement for these sample types is the ability to characterize the chain length, branching, type of monomers, and importantly stereochemistry and anomeric configuration. Herein, we showcase the multi-function capability of a cyclic ion mobility (cIM) separator embedded in a quadrupole/time-of-flight mass spectrometer (Q-ToF MS). The instrument design enables selective activation of mobility-separated precursors followed by cIM separation of product ions, an approach analogous to MSn. Using high cIM resolution, we demonstrate the separation of three isomeric pentasaccharides and, moreover, that three components are present for each compound. We show that structural differences between product ions reflect the precursor differences in some cases but not others. These findings are corroborated by a heavy oxygen labelling approach. Using this methodology, the identity of fragment ions may be assigned. This enables us to postulate that the two main components observed for each pentasaccharide are anomeric forms. The remaining low abundance component is assigned as an open-ring form.

14.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30707468

RESUMEN

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

15.
Rapid Commun Mass Spectrom ; 33 Suppl 2: 11-21, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30549457

RESUMEN

RATIONALE: Fluoroquinolones (FLQs) have been shown to form protomers with distinctive fragment profiles. Experimental parameters affect protomer formation, impacting observed conventional tandem mass spectrometric (MS/MS) dissociation and multiple reaction monitoring (MRM) transition reproducibility. Collision cross section (CCS) measurement can provide an additional identification metric and improved ion mobility (IM) separation strategies could provide further understanding of fluctuations in fragmentation when using electrospray ionisation (ESI). METHODS: Porcine muscle tissue was fortified with nine fluoroquinolone antibiotics. Extracts were cleaned using QuEChERS dispersive extraction. Separation was achieved via ultra-high-performance liquid chromatography (UHPLC) and analysis performed using positive ion ESI coupled with linear T-wave IM (N2 and CO2 drift gas) and cyclic IM-MS (calibrated to perform accurate mass and CCS measurement). RESULTS: IM-resolved protomeric species have been observed for nine FLQs (uniquely three for danofloxacin). Long-term reproducibility and cross-platform T-wave/cIM studies have demonstrated CCS metric errors <1.5% when compared with a FLQ protomer reference CCS library. When comparing FLQ protomer separation using a standard, linear T-wave IM separator (N2 /CO2 ) and using a high-resolution cyclic T-wave device (N2 ), protomer peak-to-peak resolution ranged between Rs = 1 to Rs = 6 for the IM strategies utilised. CONCLUSIONS: CCS is a reliable cross platform metric; specific FLQ CCS identification fingerprints have been produced, illustrating the potential to compliment MS/MS specificity or provide an alternative identification metric. Using cIM there is opportunity to correlate the erratic nature of protomer formation with the analytical conditions used and to gain further understanding of ionisation/dissociation mechanisms taking place during routine analyses.


Asunto(s)
Antibacterianos/química , Residuos de Medicamentos/química , Fluoroquinolonas/química , Animales , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Isomerismo , Espectrometría de Masas , Carne/análisis , Músculo Esquelético/química , Porcinos
16.
Angew Chem Int Ed Engl ; 57(52): 17194-17199, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30408305

RESUMEN

Immunoglobulins are biomolecules involved in defence against foreign substances. Flexibility is key to their functional properties in relation to antigen binding and receptor interactions. We have developed an integrative strategy combining ion mobility mass spectrometry (IM-MS) with molecular modelling to study the conformational dynamics of human IgG antibodies. Predictive models of all four human IgG subclasses were assembled and their dynamics sampled in the transition from extended to collapsed state during IM-MS. Our data imply that this collapse of IgG antibodies is related to their intrinsic structural features, including Fab arm flexibility, collapse towards the Fc region, and the length of their hinge regions. The workflow presented here provides an accurate structural representation in good agreement with the observed collision cross section for these flexible IgG molecules. These results have implications for studying other nonglobular flexible proteins.


Asunto(s)
Inmunoglobulina G/química , Gases/química , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica
17.
Nat Protoc ; 13(5): 1106-1120, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29700483

RESUMEN

With the recent success in determining membrane protein structures, further detailed understanding of the identity and function of the bound lipidome is essential. Using an approach that combines high-energy native mass spectrometry (HE-nMS) and solution-phase lipid profiling, this protocol can be used to determine the identity of the endogenous lipids that directly interact with a protein. Furthermore, this method can identify systems in which such lipid binding has a major role in regulating the oligomeric assembly of membrane proteins. The protocol begins with recording of the native mass spectrum of the protein of interest, under successive delipidation conditions, to determine whether delipidation leads to disruption of the oligomeric state. Subsequently, we propose using a bipronged strategy: first, an HE-nMS platform is used that allows dissociation of the detergent micelle at the front end of the instrument. This allows for isolation of the protein-lipid complex at the quadrupole and successive fragmentation at the collision cell, which leads to identification of the bound lipid masses. Next, simultaneous coupling of this with in-solution LC-MS/MS-based identification of extracted lipids reveals the complete identity of the interacting lipidome that copurifies with the proteins. Assimilation of the results of these two sets of experiments divulges the complete identity of the set of lipids that directly interact with the membrane protein of interest, and can further delineate its role in maintaining the oligomeric state of the protein. The entire procedure takes 2 d to complete.


Asunto(s)
Espectrometría de Masas/métodos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Multimerización de Proteína
18.
J Am Soc Mass Spectrom ; 28(11): 2492-2499, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28808984

RESUMEN

Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.

19.
Rapid Commun Mass Spectrom ; 31(17): 1415-1423, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28590551

RESUMEN

RATIONALE: The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. METHODS: Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. RESULTS: Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. CONCLUSIONS: This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics.


Asunto(s)
Lípidos/análisis , Lípidos/química , Ozono/química , Isomerismo , Conformación Molecular , Fosfatidilcolinas/análisis , Fosfatidilcolinas/química , Sodio/química
20.
Anal Chem ; 88(19): 9469-9478, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27573618

RESUMEN

We present a new variable temperature (VT), high resolution ion mobility (IM) drift tube coupled to a commercial mass spectrometer (MS). Ions are generated in an electrospray ion source with a sampling cone interface and two stacked ring RF guides which transfer ions into the mobility analyzer located prior to a quadrupole time-of-flight mass spectrometer. The drift cell can be operated over a pressure range of 0.5-3 Torr and a temperature range of 150-520 K with applied fields typically between 3 and 14 V cm-1. This makes the instrument suitable for rotationally averaged collision cross section (CCS) measurements at low E/N ratios where ions are near thermal equilibrium with the buffer gas. Fundamental studies of the effective ion temperatures can be performed at high E/N ratios. An RF ion trap/buncher is located at the beginning of the drift region, which modulates the continuous ion beam into spatially narrow packets. Packets of ions then drift in a linear electric field, which is 50.5 cm long, and are separated according to their mobility in an inert buffer gas. Post-drift, an ion funnel focuses the radially spread pulses of ions into the inlet of a commercial MS platform (Micromass QToF2). We present the novel features of this instrument and results from VT-IM-MS experiments on a range of model systems-IMS CCS standards (Agilent ESI Tune Mix), the monomeric protein Ubiquitin (8.6 kDa), and the tetrameric protein complex Concanavalin A (103 kDa). We evaluate the performance of the instrument by comparing ambient DTCCSHe values of model compounds with those found in the literature. Several effects of temperature on collision cross sections and resolution are observed. For small rigid molecules, changes in resolution are consistent with anticipated thermal diffusion effects. Changes in measured DTCCSHe for these rigid systems at different temperatures are attributed primarily to the effect of temperature on the long-range attractive interaction. Similar effects are seen for protein ions at low temperatures, although there is also some evidence for structural transitions. By heating the protein ions, their conformational profiles are significantly altered. Very high temperatures narrow the conformational space presented by both Ubiquitin and Concanavalin; it appears that diverse conformational families are "melted" into more homogeneous populations. Because of this conformational heterogeneity, the apparent IMS resolution obtained for proteins at ambient and reduced temperatures is an order of magnitude lower than the expected diffusion limited resolution (Rmax). This supports a hypothesis that the broad DTCCSHe features frequently observed for proteins do not correspond to interconverting conformers, but rather to high numbers of intrinsically stable structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...