Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 9(11): 1106, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382077

RESUMEN

Yes-associated protein (YAP) is a mechanosensor protein and a downstream effector of the Hippo kinase pathway, which controls organ growth, cell proliferation, survival, maintenance and regeneration. Unphosphorylated YAP translocates to the nucleus where it acts as a cofactor of primarily the TEAD transcription factors to activate target gene transcription and cell proliferation. Perturbed YAP activation results in tumorigenesis. The pathways downstream of activated YAP that drive cell proliferation remain relatively unexplored. In this study, we employed YAP2-5SA-∆C transgenic mice, which overexpress a mildly activated YAP mutant protein in basal keratinocytes leading to increased proliferation of the epidermal stem/progenitor cell populations. We performed massively-parallel sequencing of skin biopsy mRNA (RNA-Seq) and found dysregulation of 1491 genes in YAP2-5SA-∆C skin, including many with roles in cell activation and proliferation. Furthermore, we found that 150 of these dysregulated genes harbored YAP/TEAD binding motifs in the 3' UTR, suggesting that these may be direct YAP/TEAD target genes in the control of epidermal regeneration. Further validation and functional characterization assays identified Plau and Tgfbr3 as prime candidate genes that may be activated by epidermal YAP activity in the mouse skin in vivo to promote keratinocyte proliferation. This study provides novel insights into the mechanisms regulated by YAP that control tissue homeostasis, and in particular in conditions where YAP is aberrantly activated such as in neoplastic and regenerative skin disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Queratinocitos/metabolismo , Proteoglicanos/genética , ARN Mensajero/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Transcriptoma , Activador de Plasminógeno de Tipo Uroquinasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Epidermis/metabolismo , Epidermis/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Queratinocitos/patología , Ratones , Ratones Transgénicos , Motivos de Nucleótidos , Unión Proteica , Proteoglicanos/metabolismo , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Proteínas Señalizadoras YAP
2.
Nucleic Acids Res ; 46(21): 11381-11395, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30335167

RESUMEN

During embryogenesis, vascular development relies on a handful of transcription factors that instruct cell fate in a distinct sub-population of the endothelium (1). The SOXF proteins that comprise SOX7, 17 and 18, are molecular switches modulating arterio-venous and lymphatic endothelial differentiation (2,3). Here, we show that, in the SOX-F family, only SOX18 has the ability to switch between a monomeric and a dimeric form. We characterized the SOX18 dimer in binding assays in vitro, and using a split-GFP reporter assay in a zebrafish model system in vivo. We show that SOX18 dimerization is driven by a novel motif located in the vicinity of the C-terminus of the DNA binding region. Insertion of this motif in a SOX7 monomer forced its assembly into a dimer. Genome-wide analysis of SOX18 binding locations on the chromatin revealed enrichment for a SOX dimer binding motif, correlating with genes with a strong endothelial signature. Using a SOX18 small molecule inhibitor that disrupts dimerization, we revealed that dimerization is important for transcription. Overall, we show that dimerization is a specific feature of SOX18 that enables the recruitment of key endothelial transcription factors, and refines the selectivity of the binding to discrete genomic locations assigned to endothelial specific genes.


Asunto(s)
Factores de Transcripción SOXF/química , Secuencias de Aminoácidos , Animales , Técnicas Biosensibles , Proteínas de Unión al ADN/química , Células Endoteliales/metabolismo , Endotelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Humanos , Ratones , Mutación , Sistemas de Lectura Abierta , Dominios Proteicos , Multimerización de Proteína , Pez Cebra , Proteínas de Pez Cebra/química
3.
Proc Natl Acad Sci U S A ; 115(41): 10517-10522, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254175

RESUMEN

Photosynthetic linear electron flow (LEF) produces ATP and NADPH, while cyclic electron flow (CEF) exclusively drives photophosphorylation to supply extra ATP. The fine-tuning of linear and cyclic electron transport levels allows photosynthetic organisms to balance light energy absorption with cellular energy requirements under constantly changing light conditions. As LEF and CEF share many electron transfer components, a key question is how the same individual structural units contribute to these two different functional modes. Here, we report the structural identification of a photosystem I (PSI)-light harvesting complex I (LHCI)-cytochrome (cyt) b6f supercomplex isolated from the unicellular alga Chlamydomonas reinhardtii under anaerobic conditions, which induces CEF. This provides strong evidence for the model that enhanced CEF is induced by the formation of CEF supercomplexes, when stromal electron carriers are reduced, to generate additional ATP. The additional identification of PSI-LHCI-LHCII complexes is consistent with recent findings that both CEF enhancement and state transitions are triggered by similar conditions, but can occur independently from each other. Single molecule fluorescence correlation spectroscopy indicates a physical association between cyt b6f and fluorescent chlorophyll containing PSI-LHCI supercomplexes. Single particle analysis identified top-view projections of the corresponding PSI-LHCI-cyt b6f supercomplex. Based on molecular modeling and mass spectrometry analyses, we propose a model in which dissociation of LHCA2 and LHCA9 from PSI supports the formation of this CEF supercomplex. This is supported by the finding that a Δlhca2 knockout mutant has constitutively enhanced CEF.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Complejo de Citocromo b6f/química , Electrones , Complejos de Proteína Captadores de Luz/química , Complejos Multiproteicos/química , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Anaerobiosis , Chlamydomonas reinhardtii/crecimiento & desarrollo , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Conformación Proteica
4.
PLoS Biol ; 16(4): e2005473, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621251

RESUMEN

We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.


Asunto(s)
Ascorbato Peroxidasas/genética , Células Epiteliales/ultraestructura , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Anticuerpos de Dominio Único/química , Animales , Ascorbato Peroxidasas/metabolismo , Línea Celular , Sistema Libre de Células , Cricetulus , Células Epiteliales/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/genética , Proteína Fluorescente Roja
5.
Biotechnol Bioeng ; 115(8): 1904-1914, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29603735

RESUMEN

Cell-free methods of protein synthesis offer rapid access to expressed proteins. Though the amounts produced are generally only at a small scale, these are sufficient to perform protein-protein interaction assays and tests of enzymatic activity. As such they are valuable tools for the biochemistry and bioengineering community. However the most complex, eukaryotic cell-free systems are difficult to manufacture in house and can be prohibitively expensive to obtain from commercial sources. The Leishmania tarentolae system offers a relatively cheap alternative which is capable of producing difficult to express proteins, but which is simpler to produce in large scale. However, this system suffers from batch-to-batch variability, which has been accepted as a consequence of the complexity of the extracts. Here we show an unexpected origin for the variability observed and demonstrate that small variations in a single parameter can dramatically affect expression, such that minor pipetting errors can have major effects on yields. L. tarentolae cell-free lysate activity is shown to be more stable to changes in Mg2+ concentration at a lower ratio of feed solution to lysate in the reaction than typically used, and a higher Mg2+ optimum. These changes essentially eliminate batch-to-batch variability of L. tarentolae lysate activity and permit their full potential to be realized.


Asunto(s)
Sistema Libre de Células , Biosíntesis de Proteínas , Extractos Celulares , Vectores Genéticos , Leishmania , Transcripción Genética
7.
J Mol Biol ; 430(4): 491-508, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29288634

RESUMEN

Single-molecule fluorescence has the unique ability to quantify small oligomers and track conformational changes at a single-protein level. Here we tackled one of the most extreme protein behaviors, found recently in an inflammation pathway. Upon danger recognition in the cytosol, NLRP3 recruits its signaling adaptor, ASC. ASC start polymerizing in a prion-like manner and the system goes in "overdrive" by producing a single micron-sized "speck." By precisely controlling protein expression levels in an in vitro translation system, we could trigger the polymerization of ASC and mimic formation of specks in the absence of inflammasome nucleators. We utilized single-molecule spectroscopy to fully characterize prion-like behaviors and self-propagation of ASC fibrils. We next used our controlled system to monitor the conformational changes of ASC upon fibrillation. Indeed, ASC consists of a PYD and CARD domains, separated by a flexible linker. Individually, both domains have been found to form fibrils, but the structure of the polymers formed by the full-length ASC proteins remains elusive. For the first time, using single-molecule Förster resonance energy transfer, we studied the relative positions of the CARD and PYD domains of full-length ASC. An unexpectedly large conformational change occurred upon ASC fibrillation, suggesting that the CARD domain folds back onto the PYD domain. However, contradicting current models, the "prion-like" conformer was not initiated by binding of ASC to the NLRP3 platform. Rather, using a new method, hybrid between Photon Counting Histogram and Number and Brightness analysis, we showed that NLRP3 forms hexamers with self-binding affinities around 300nM. Overall our data suggest a new mechanism, where NLRP3 can initiate ASC polymerization simply by increasing the local concentration of ASC above a supercritical level.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Pliegue de Proteína , Imagen Individual de Molécula/métodos , Fluorescencia , Humanos , Modelos Moleculares , Proteína con Dominio Pirina 3 de la Familia NLR/química , Priones/química , Agregado de Proteínas , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
8.
Sci Rep ; 6: 37630, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892477

RESUMEN

Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer's and Parkinson's disease. Parkinson's disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson's disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils.


Asunto(s)
Fluorescencia , Proteínas Mutantes/química , Agregado de Proteínas , Agregación Patológica de Proteínas , Imagen Individual de Molécula/métodos , alfa-Sinucleína/química , Modelos Biológicos , Peso Molecular , Proteínas Mutantes/ultraestructura , Nanopartículas , Biosíntesis de Proteínas , Multimerización de Proteína , Temperatura , Ultracentrifugación , alfa-Sinucleína/ultraestructura
9.
J Cell Biol ; 214(6): 705-18, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27597756

RESUMEN

Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body-like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-Syn(WT) and that of the Parkinson's disease-causing α-Syn(A30P) mutant, an effect rescued by Munc18-1(WT) expression, indicative of chaperone activity. Coexpression of the α-Syn(A30P) mutant with Munc18-1 reduced the number of α-Syn(A30P) aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Degeneración Nerviosa , Neuronas/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo , Animales , Animales Recién Nacidos , Genotipo , Haploinsuficiencia , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Microscopía Fluorescente , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Munc18/química , Proteínas Munc18/genética , Mutación , Neuronas/patología , Células PC12 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Unión Proteica , Conformación Proteica , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección , alfa-Sinucleína/química , alfa-Sinucleína/genética
10.
Int J Mol Sci ; 17(5)2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27144560

RESUMEN

Protein self-association is a key feature that can modulate the physiological role of proteins or lead to deleterious effects when uncontrolled. Protein oligomerization is a simple way to modify the activity of a protein, as the modulation of binding interfaces allows for self-activation or inhibition, or variation in the selectivity of binding partners. As such, dimerization and higher order oligomerization is a common feature in signaling proteins, for example, and more than 70% of enzymes have the potential to self-associate. On the other hand, protein aggregation can overcome the regulatory mechanisms of the cell and can have disastrous physiological effects. This is the case in a number of neurodegenerative diseases, where proteins, due to mutation or dysregulation later in life, start polymerizing and often fibrillate, leading to the creation of protein inclusion bodies in cells. Dimerization, well-defined oligomerization and random aggregation are often difficult to differentiate and characterize experimentally. Single molecule "counting" methods are particularly well suited to the study of self-oligomerization as they allow observation and quantification of behaviors in heterogeneous conditions. However, the extreme dilution of samples often causes weak complexes to dissociate, and rare events can be overlooked. Here, we discuss a straightforward alternative where the principles of single molecule detection are used at higher protein concentrations to quantify oligomers and aggregates in a background of monomers. We propose a practical guide for the use of confocal spectroscopy to quantify protein oligomerization status and also discuss about its use in monitoring changes in protein aggregation in drug screening assays.


Asunto(s)
Proteínas/química , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Humanos , Multimerización de Proteína , Estabilidad Proteica , Proteínas/metabolismo , Análisis Espectral
11.
J Biotechnol ; 195: 1-7, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25529348

RESUMEN

Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era.


Asunto(s)
Sistema Libre de Células , Clonación Molecular/métodos , Vectores Genéticos/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Vectores Genéticos/metabolismo , Humanos , Leishmania/citología , Leishmania/metabolismo , Técnicas de Amplificación de Ácido Nucleico , Proteínas Recombinantes/genética
12.
Cell Rep ; 9(1): 206-218, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284778

RESUMEN

Munc18-1 is a critical component of the core machinery controlling neuroexocytosis. Recently, mutations in Munc18-1 leading to the development of early infantile epileptic encephalopathy have been discovered. However, which degradative pathway controls Munc18-1 levels and how it impacts on neuroexocytosis in this pathology is unknown. Using neurosecretory cells deficient in Munc18, we show that a disease-linked mutation, C180Y, renders the protein unstable at 37°C. Although the mutated protein retains its function as t-SNARE chaperone, neuroexocytosis is impaired, a defect that can be rescued at a lower permissive temperature. We reveal that Munc18-1 undergoes K48-linked polyubiquitination, which is highly increased by the mutation, leading to proteasomal, but not lysosomal, degradation. Our data demonstrate that functional Munc18-1 levels are controlled through polyubiquitination and proteasomal degradation. The C180Y disease-causing mutation greatly potentiates this degradative pathway, rendering Munc18-1 unable to facilitate neuroexocytosis, a phenotype that is reversed at a permissive temperature.


Asunto(s)
Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Exocitosis/fisiología , Humanos , Modelos Moleculares , Proteínas Munc18/química , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Proteínas SNARE/metabolismo , Ubiquitinación
13.
Mol Cell Proteomics ; 13(9): 2233-45, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24866125

RESUMEN

Protein dimerization and oligomerization is commonly used by nature to increase the structural and functional complexity of proteins. Regulated protein assembly is essential to transfer information in signaling, transcriptional, and membrane trafficking events. Here we show that a combination of cell-free protein expression, a proximity based interaction assay (AlphaScreen), and single-molecule fluorescence allow rapid mapping of homo- and hetero-oligomerization of proteins. We have applied this approach to the family of BAR domain-containing sorting nexin (SNX-BAR) proteins, which are essential regulators of membrane trafficking and remodeling in all eukaryotes. Dimerization of BAR domains is essential for creating a concave structure capable of sensing and inducing membrane curvature. We have systematically mapped 144 pairwise interactions between the human SNX-BAR proteins and generated an interaction matrix of preferred dimerization partners for each family member. We find that while nine SNX-BAR proteins are able to form homo-dimers, several including the retromer-associated SNX1, SNX2, and SNX5 require heteromeric interactions for dimerization. SNX2, SNX4, SNX6, and SNX8 show a promiscuous ability to bind other SNX-BAR proteins and we also observe a novel interaction with the SNX3 protein which lacks the BAR domain structure.


Asunto(s)
Nexinas de Clasificación/metabolismo , Dimerización , Humanos , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia/métodos
14.
J Biol Chem ; 289(11): 7764-75, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24469447

RESUMEN

Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29-40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA.


Asunto(s)
Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Uniones Adherentes/metabolismo , Cortactina/metabolismo , Epitelio/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Antígenos CD , Células CACO-2 , Cadherinas/metabolismo , Adhesión Celular , Sistema Libre de Células , Citoesqueleto/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Microscopía Fluorescente , Espectrometría de Fluorescencia , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
15.
Cell Signal ; 25(6): 1423-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23524336

RESUMEN

The primary endpoint of signalling through the canonical Raf-MEK-ERK MAP kinase cascade is ERK activation. Here we report a novel signalling outcome for this pathway. Activation of the MAP kinase pathway by growth factors or phorbol esters during G2 phase results in only transient activations of ERK and p90RSK, then suppression to below control levels. A small peak of ERK and p90RSK activation in early G2 phase cells was identified, and inhibition of this delayed entry into mitosis. The previously identified, proteolytically cleaved form of MEK1 termed tMEK (truncated MEK1), is also induced with G2 phase MAPK pathway activation. We demonstrate that addition of recombinant mutants of MEK1 with an N-terminal truncation similar to that of tMEK also inhibited ERK and p90RSK activations and delayed progression into mitosis. Only catalytically inactive forms of tMEK were capable of these effects, but surprisingly, phosphorylation on the activating Ser218/222 sites was also required. A lack of MEK1 or ability to accumulate tMEK resulted in the absence of the feedback inhibition of ERK and p90RSK activations. tMEK is a novel output from the canonical MAP kinase signalling pathway, acting in a MAPK signalling-regulated dominant negative manner to inhibit ERK and p90RSK activations, acting as a dampening mechanism to reduce the magnitude or duration of MAPK pathway signalling in G2/M phase.


Asunto(s)
MAP Quinasa Quinasa 1/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fase G2 , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo
16.
J Invest Dermatol ; 132(6): 1681-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22402442

RESUMEN

UVR is a major environmental risk factor for the development of melanoma. Here we describe a coupled DNA-damage tolerance (DDT) mechanism and G2-phase cell cycle checkpoint induced in response to suberythemal doses of UVR that is commonly defective in melanomas. This coupled response is triggered by a small number of UVR-induced DNA lesions incurred during G1 phase that are not repaired by nucleotide excision repair (NER). These lesions are detected during S phase, but rather than stalling replication, they trigger the DDT-dependent formation of single-stranded DNA (ssDNA) gaps. The ssDNA attracts replication protein A (RPA), which initiates ATR-Chk1 (ataxia telangiectasia and Rad3-related/checkpoint kinase 1) G2-phase checkpoint signaling, and colocalizes with components of the RAD18 and RAD51 postreplication repair pathways. We demonstrate that depletion of RAD18 delays both the resolution of RPA foci and exit from the G2-phase arrest, indicating the involvement of RAD18-dependent postreplication repair in ssDNA gap repair during G2 phase. Moreover, the presence of RAD51 and BRCA1 suggests that an error-free mechanism may also contribute to repair. Loss of the UVR-induced G2-phase checkpoint results in increased UVR signature mutations after exposure to suberythemal UVR. We propose that defects in the UVR-induced G2-phase checkpoint and repair mechanism are likely to contribute to melanoma development.


Asunto(s)
Replicación del ADN/genética , ADN de Cadena Simple/genética , Fase G2/efectos de la radiación , Melanoma/patología , Neoplasias Cutáneas/patología , Proteína Quinasa CDC2/metabolismo , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Ciclina B1/metabolismo , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/fisiología , Células Epidérmicas , Epidermis/efectos de la radiación , Fase G1/genética , Fase G1/efectos de la radiación , Fase G2/genética , Humanos , Melanoma/genética , Mutación/genética , Mutación/efectos de la radiación , Fase S/genética , Fase S/efectos de la radiación , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos
17.
J Biol Chem ; 284(42): 29015-23, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19703905

RESUMEN

Mutations in adenomatous polyposis coli (APC) protein is a major contributor to tumor initiation and progression in several tumor types. These mutations affect APC function in the Wnt-beta-catenin signaling and influence mitotic spindle anchoring to the cell cortex and orientation. Here we report that the mitotic anchoring and orientation function of APC is regulated by cyclin A/cdk2. Knockdown of cyclin A and inhibition of cdk2 resulted in cells arrested in mitosis with activation of the spindle assembly checkpoint. The mitotic spindle was unable to form stable attachments to the cell cortex, and this resulted in the spindles failing to locate to the central position in the cells and undergo dramatic rotation. We have demonstrated that cyclin A/cdk2 specifically associates with APC in late G2 phase and phosphorylates it at Ser-1360, located in the mutation cluster region of APC. Mutation of APC Ser-1360 to Ala results in identical off-centered mitotic spindles. Thus, this cyclin A/cdk2-dependent phosphorylation of APC affects astral microtubule attachment to the cortical surface in mitosis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Huso Acromático , Línea Celular Tumoral , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Mitosis , Mutación , Fosforilación , Factores de Tiempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
18.
J Biol Chem ; 282(10): 6954-64, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17182611

RESUMEN

The spindle assembly checkpoint arrests cells in mitosis when defects in mitotic spindle assembly or partitioning of the replicated genome are detected. This checkpoint blocks exit from mitosis until the defect is rectified or the cell initiates apoptosis. In this study we have used caffeine to identify components of the mechanism that signals apoptosis in mitotic checkpoint-arrested cells. Addition of caffeine to spindle checkpoint-arrested cells induced >40% apoptosis within 5 h. It also caused proteasome-mediated destruction of cyclin B1, a corresponding reduction in cyclin B1/cdk1 activity, and reduction in MPM-2 reactivity. However, cells retained MAD2 staining at the kinetochores, an indication of continued spindle checkpoint function. Blocking proteasome activity did not block apoptosis, but continued spindle checkpoint function was essential for apoptosis. After systematically eliminating all known targets, we have identified p21-activated kinase PAK1, which has an anti-apoptotic function in spindle checkpoint-arrested cells, as a target for caffeine inhibition. Knockdown of PAK1 also increased apoptosis in spindle checkpoint-arrested cells. This study demonstrates that the spindle checkpoint not only regulates mitotic exit but apoptosis in mitosis through the activity of PAK1.


Asunto(s)
Apoptosis/efectos de los fármacos , Cafeína/farmacología , Huso Acromático/fisiología , Benzamidas/farmacología , Línea Celular , Fase G2 , Humanos , Mitosis/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , Quinazolinas/farmacología , Quinasas p21 Activadas
19.
J Biol Chem ; 281(15): 9987-95, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16476733

RESUMEN

Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/química , Animales , Cafeína/farmacología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , ADN Complementario/metabolismo , Inhibidores Enzimáticos/farmacología , Fase G1 , Fase G2 , Células HeLa , Humanos , Imidazoles/farmacología , Proteínas Inhibidoras de la Apoptosis , Concentración 50 Inhibidora , Cinética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Modelos Químicos , Proteínas de Neoplasias/metabolismo , Fenotipo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , ARN/química , ARN Interferente Pequeño/metabolismo , Proteína de Retinoblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fase S , Survivin , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
FASEB J ; 17(11): 1550-2, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12824307

RESUMEN

Cell cycle checkpoints act to protect cells from external stresses and internal errors that would compromise the integrity of the cell. Checkpoints are often defective in cancer cells. Drugs that target checkpoint mechanisms should therefore be selective for tumor cells that are defective for the drug-sensitive checkpoint. Histone deacetylase inhibitors typify this class of agents. They trigger a G2-phase checkpoint response in normal cells but are cytotoxic in tumor cells in which this checkpoint is defective. In this study, we investigated the molecular basis of the tumor-selective cytotoxicity of these drugs and demonstrated that it is due to the disruption of two cell cycle checkpoints. The first is the histone deacetylase inhibitor-sensitive G2-phase checkpoint, which is defective in drug-sensitive cells and permits cells to enter an aberrant mitosis. The second is the drug-dependent bypass of the mitotic spindle checkpoint that normally detects aberrant mitosis and blocks mitotic exit until the defect is rectified. The disruption of both checkpoints results in the premature exit of cells from an abortive mitosis followed by apoptosis. This study of histone deacetylase inhibitors demonstrates that drugs targeting cell cycle checkpoints can provide the selectivity and cytotoxicity desired in effective chemotherapeutic agents.


Asunto(s)
Antineoplásicos/toxicidad , Inhibidores Enzimáticos/toxicidad , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/toxicidad , Antineoplásicos/química , Apoptosis , Ciclo Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Fase G2 , Células HeLa , Humanos , Cinética , Modelos Biológicos , Huso Acromático/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...