Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Cancer Res ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546397

RESUMEN

The pathogenesis of duodenal tumours in the inherited tumour syndromes Familial Adenomatous Polyposis (FAP) and MUTYH-associated Polyposis (MAP) is poorly understood. This study aimed to identify genes that are significantly mutated in these tumours and to explore the effects of these mutations. Whole exome and whole transcriptome sequencing identified recurrent somatic coding variants of PIGA in 19/70 (27%) FAP and MAP duodenal adenomas, and further confirmed the established driver roles for APC and KRAS. PIGA catalyses the first step in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Flow cytometry of PIGA-mutant adenoma-derived and CRISPR-edited duodenal organoids confirmed loss of GPI anchors in duodenal epithelial cells and transcriptional profiling of duodenal adenomas revealed transcriptional signatures associated with loss of PIGA. Implications: PIGA somatic mutation in duodenal tumours from patients with FAP and MAP and loss of membrane GPI-anchors may present new opportunities for understanding and intervention in duodenal tumorigenesis.

2.
Antioxidants (Basel) ; 12(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37507914

RESUMEN

Unlike skin, oral mucosal wounds are characterized by rapid healing and minimal scarring, attributable to the "enhanced" healing properties of oral mucosal fibroblasts (OMFs). As oxidative stress is increasingly implicated in regulating wound healing outcomes, this study compared oxidative stress biomarker and enzymic antioxidant profiles between patient-matched oral mucosal/skin tissues and OMFs/skin fibroblasts (SFs) to determine whether superior oral mucosal antioxidant capabilities and reduced oxidative stress contributed to these preferential healing properties. Oral mucosa and skin exhibited similar patterns of oxidative protein damage and lipid peroxidation, localized within the lamina propria/dermis and oral/skin epithelia, respectively. SOD1, SOD2, SOD3 and catalase were primarily localized within epithelial tissues overall. However, SOD3 was also widespread within the lamina propria localized to OMFs, vasculature and the extracellular matrix. OMFs were further identified as being more resistant to reactive oxygen species (ROS) generation and oxidative DNA/protein damage than SFs. Despite histological evaluation suggesting that oral mucosa possessed higher SOD3 expression, this was not fully substantiated for all OMFs examined due to inter-patient donor variability. Such findings suggest that enzymic antioxidants have limited roles in mediating privileged wound healing responses in OMFs, implying that other non-enzymic antioxidants could be involved in protecting OMFs from oxidative stress overall.

3.
J Extracell Vesicles ; 10(12): e12150, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34596356

RESUMEN

Histological assessment of prostate cancer is the key diagnostic test and can predict disease outcome. This is however an invasive procedure that carries associated risks, hence non-invasive assays to support the diagnostic pathway are much needed. A key feature of disease progression, and subsequent poor prognosis, is the presence of an altered stroma. Here we explored the utility of prostate stromal cell-derived vesicles as indicators of an altered tumour environment. We compared vesicles from six donor-matched pairs of adjacent-normal versus disease-associated primary stromal cultures. We identified 19 differentially expressed transcripts that discriminate disease from normal stromal extracellular vesicles (EVs). EVs isolated from patient serum were investigated for these putative disease-discriminating mRNA. A set of transcripts including Caveolin-1 (CAV1), TMP2, THBS1, and CTGF were found to be successful in discriminating clinically insignificant (Gleason = 6) disease from clinically significant (Gleason > 8) prostate cancer. Furthermore, correlation between transcript expression and progression-free survival suggests that levels of these mRNA may predict disease outcome. Informed by a machine learning approach, combining measures of the five most informative EV-associated mRNAs with PSA was shown to significantly improve assay sensitivity and specificity. An in-silico model was produced, showcasing the superiority of this multi-modal liquid biopsy compared to needle biopsy for predicting disease progression. This proof of concept highlights the utility of serum EV analytics as a companion diagnostic test with prognostic utility, which may obviate the need for biopsy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias de la Próstata/genética , ARN Mensajero/genética , Humanos , Masculino
4.
Dis Model Mech ; 14(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34003256

RESUMEN

Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER-) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER- mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER- cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity.


Asunto(s)
Amplificación de Genes , Sitios Genéticos , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Receptor ErbB-2/genética , Reproducción/fisiología , Vía de Señalización Wnt/genética , Alelos , Animales , Carcinogénesis/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Epitelio/patología , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Integrasas/metabolismo , Estimación de Kaplan-Meier , Glándulas Mamarias Animales/patología , Metaplasia , Ratones Transgénicos , Fenotipo
5.
Blood Adv ; 5(3): 889-899, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33560400

RESUMEN

Lifelong multilineage hematopoiesis critically depends on rare hematopoietic stem cells (HSCs) that reside in the hypoxic bone marrow microenvironment. Although the role of the canonical oxygen sensor hypoxia-inducible factor prolyl hydroxylase has been investigated extensively in hematopoiesis, the functional significance of other members of the 2-oxoglutarate (2-OG)-dependent protein hydroxylase family of enzymes remains poorly defined in HSC biology and multilineage hematopoiesis. Here, by using hematopoietic-specific conditional gene deletion, we reveal that the 2-OG-dependent protein hydroxylase JMJD6 is essential for short- and long-term maintenance of the HSC pool and multilineage hematopoiesis. Additionally, upon hematopoietic injury, Jmjd6-deficient HSCs display a striking failure to expand and regenerate the hematopoietic system. Moreover, HSCs lacking Jmjd6 lose multilineage reconstitution potential and self-renewal capacity upon serial transplantation. At the molecular level, we found that JMJD6 functions to repress multiple processes whose downregulation is essential for HSC integrity, including mitochondrial oxidative phosphorylation (OXPHOS), protein synthesis, p53 stabilization, cell cycle checkpoint progression, and mTORC1 signaling. Indeed, Jmjd6-deficient primitive hematopoietic cells display elevated basal and maximal mitochondrial respiration rates and increased reactive oxygen species (ROS), prerequisites for HSC failure. Notably, an antioxidant, N-acetyl-l-cysteine, rescued HSC and lymphoid progenitor cell depletion, indicating a causal impact of OXPHOS-mediated ROS generation upon Jmjd6 deletion. Thus, JMJD6 promotes HSC maintenance and multilineage differentiation potential by suppressing fundamental pathways whose activation is detrimental for HSC function.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Médula Ósea , Trasplante de Médula Ósea , Diferenciación Celular
6.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33108352

RESUMEN

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of "stemness," such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane-, and cell adhesion-related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9- and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Eliminación de Gen , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Noqueados , Células Madre Neoplásicas/patología , Proteínas Supresoras de Tumor/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
7.
Haematologica ; 106(4): 958-967, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381576

RESUMEN

Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are incurable hematological malignancies that are pathologically linked with aberrant NF-κB activation. In this study, we identified a group of novel C8-linked benzofused Pyrrolo[2,1-c][1,4]benzodiazepines (PBD) monomeric hybrids capable of sequence-selective inhibition of NF-κB with low nanomolar LD50 values in CLL (n=46) and MM cell lines (n=5). The lead compound, DC-1-192, significantly inhibited NF-κB DNA binding after just 4h exposure and demonstrating inhibitory effects on both canonical and non-canonical NF-κB subunits. In primary CLL cells, sensitivity to DC-1-192 was inversely correlated with RelA subunit expression (r2=0.2) and samples with BIRC3 or NOTCH1 mutations showed increased sensitivity (P=0.001). RNA-sequencing and gene set enrichment analysis confirmed the over-representation of NF-κB regulated genes in the down-regulated gene list. Furthermore, In vivo efficacy studies in NOD/SCID mice, using a systemic RPMI 8226 human multiple myeloma xenograft model, showed that DC-1-192 significantly prolonged survival (P=0.017). In addition, DC1-192 showed synergy with bortezomib and ibrutinib; synergy with ibrutinib was enhanced when CLL cells were co-cultured on CD40L-expressing fibroblasts in order to mimic the cytoprotective lymph node microenvironment (P = 0.01). Given that NF-κB plays a role in both bortezomib and ibrutinib resistance mechanisms, these data provide a strong rationale for the use of DC-1-192 in the treatment of NF-κB-driven cancers, particularly in the context of relapsed/refractory disease.


Asunto(s)
Neoplasias Hematológicas , Leucemia Linfocítica Crónica de Células B , Adenina/análogos & derivados , Animales , Apoptosis , Benzodiazepinas/farmacología , Bortezomib/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , FN-kappa B , Piperidinas , Pirroles , Microambiente Tumoral
8.
Oncol Rep ; 44(4): 1717-1726, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32945506

RESUMEN

Human papillomavirus­positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) has increased in incidence and has a much better prognosis than HPV­negative (HPV­) OPSCC with radiotherapy alone, but exactly why is unknown. The present study therefore aimed to further examine the sensitivity and possible changes in gene expression of several HPV+ and HPV­ OPSCC, including various novel cell lines, upon ionizing irradiation (IR). Previously established HPV+ UM­SCC­47, UPCI­SCC­90, CU­OP­2, CU­OP­3 and HPV­ UM­SCC­4, UM­SCC­6, UM­SCC­74a, UM­SCC­19 and newly established CU­OP­17 and CU­OP­20, characterised here, were subjected to 0­6 Gy. Surviving fractions of each cell line were tested by clonogenic assays, and irregularities in cell cycle responses were examined by flow cytometry, while changes in gene expression were followed by mRNA sequencing. HPV+ OPSCC cell lines showed greater variation in sensitivity to ionizing irradiation (IR) and tended to be more sensitive than HPV­ OPSCC cell lines. However, their IR sensitivity was not correlated to the proportion of cells in G2 arrest, and HPV­ cell lines generally showed lower increases in G2 after IR. Upon IR with 2 Gy, mRNA sequencing revealed an increase in minor HPV integration sites in HPV+ cell lines, and some changes in gene expression in OPSCC cell lines, but not primarily those associated with DNA repair. To conclude, HPV+ OPSCC cell lines showed greater variation in their sensitivity to IR, with some that were radioresistant, but overall the HPV+ OPSCC group still tended to be more sensitive to IR than the HPV­ OPSCC group. In addition, HPV+ OPSCC lines were more frequently in G2 as compared to HPV­ cell lines, but the increase in G2 arrest upon IR in HPV+ OPSCC was not correlated to sensitivity to IR. Increases in minor HPV integration sites and changes in gene expression were also demonstrated after irradiation with 2 Gy.


Asunto(s)
Infecciones por Papillomavirus/radioterapia , Tolerancia a Radiación/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Alphapapillomavirus/aislamiento & purificación , Alphapapillomavirus/patogenicidad , Línea Celular Tumoral , Reparación del ADN/efectos de la radiación , Humanos , Infecciones por Papillomavirus/virología , ARN Mensajero/genética , Radiación Ionizante , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
9.
Eur J Hum Genet ; 28(1): 118-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31383941

RESUMEN

Familial adenomatous polyposis (FAP) is characterised by the development of hundreds to thousands of colorectal adenomas and results from inherited or somatic mosaic variants in the APC gene. Index patients with suspected FAP are usually investigated by APC coding region sequence and dosage analysis in a clinical diagnostic setting. The identification of an APC variant which is predicted to alter protein function enables predictive genetic testing to guide the management of family members. This report describes a 4-generation family with a phenotype consistent with FAP, but in which an APC variant had not been identified, despite testing. To explore this further, quantitative PCR (qPCR) was employed to assess APC transcription, demonstrating reduced levels of APC RNA. Next generation sequencing (NGS) identified the APC 5'UTR/ Exon 1 variant, c.-190 G>A, that had been reported previously in an another FAP family with APC allelic imbalance. Quantitative RNA studies and DNA sequencing of the APC promoters/ Exon 1 may be useful diagnostically for patients with suspected FAP when coding region variants cannot be identified.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Mutación , Regiones Promotoras Genéticas , Regiones no Traducidas 5' , Poliposis Adenomatosa del Colon/diagnóstico , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Humanos , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Stem Cell Reports ; 13(2): 291-306, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31378673

RESUMEN

Subversion of transcription factor (TF) activity in hematopoietic stem/progenitor cells (HSPCs) leads to the development of therapy-resistant leukemic stem cells (LSCs) that drive fulminant acute myeloid leukemia (AML). Using a conditional mouse model where zinc-finger TF Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to rapid and complete cell-autonomous loss of adult hematopoietic stem cells. By using short hairpin RNAi to target GATA2, we also identify a requirement for GATA2 in human HSPCs. In Meis1a/Hoxa9-driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. Ablation of Gata2 enforces an LSC-specific program of enhanced apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation--which is characteristically blocked in AML. Thus, GATA2 acts as a critical regulator of normal and leukemic stem cells and mediates transcriptional networks that may be exploited therapeutically to target key facets of LSC behavior in AML.


Asunto(s)
Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Apoptosis , Autorrenovación de las Células , Modelos Animales de Enfermedad , Factor de Transcripción GATA2/antagonistas & inhibidores , Factor de Transcripción GATA2/metabolismo , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
11.
Oncogene ; 38(16): 3102, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622341

RESUMEN

This article was originally published under standard licence, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.

12.
PLoS One ; 13(12): e0207934, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30543656

RESUMEN

The incidence of Human Papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) is increasing rapidly in the UK. Patients with HPV-positive OPSCC generally show superior clinical responses relative to HPV-negative patients. We hypothesised that these superior responses could be associated with defective repair of DNA double strand breaks (DSB). The study aimed to determine whether defective DNA repair could be associated with sensitivity to inhibition of DNA repair using the PARP inhibitor Olaparib. Sensitivity to Olaparib, and induction and repair of DNA damage, were assessed in a panel of 8 OPSCC cell-lines, including 2 novel HPV-positive lines. Effects on cell cycle distribution and levels of PARP1 and p53 were quantified. RNA-sequencing was used to assess differences in activity of DNA repair pathways. Two HPV-positive OPSCC lines were sensitive to Olaparib at potentially therapeutic doses (0.1-0.5 µM). Two HPV-negative lines were sensitive at an intermediate dose. Four other lines, derived from HPV-positive and HPV-negative tumours, were resistant to PARP inhibition. Only one cell-line, UPCISCC90, showed results consistent with the original hypothesis i.e. that in HPV-positive cells, treatment with Olaparib would cause accumulation of DSB, resulting in cell cycle arrest. There was no evidence that HPV-positive tumours exhibit defective repair of DSB. However, the data suggest that a subset of OPSCC may be susceptible to PARP-inhibitor based therapy.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Reparación del ADN/efectos de los fármacos , Neoplasias Orofaríngeas/tratamiento farmacológico , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/tratamiento farmacológico , Ftalazinas/farmacología , Piperazinas/farmacología , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Perfilación de la Expresión Génica , Humanos , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
Oncogene ; 37(45): 5913-5925, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29980790

RESUMEN

Cancer cells lose homeostatic flexibility because of mutations and dysregulated signaling pathways involved in maintaining homeostasis. Tuberous Sclerosis Complex 1 (TSC1) and TSC2 play a fundamental role in cell homeostasis, where signal transduction through TSC1/TSC2 is often compromised in cancer, leading to aberrant activation of mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 hyperactivation increases the basal level of endoplasmic reticulum (ER) stress via an accumulation of unfolded protein, due to heightened de novo protein translation and repression of autophagy. We exploit this intrinsic vulnerability of tumor cells lacking TSC2, by treating with nelvinavir to further enhance ER stress while inhibiting the proteasome with bortezomib to prevent effective protein removal. We show that TSC2-deficient cells are highly dependent on the proteosomal degradation pathway for survival. Combined treatment with nelfinavir and bortezomib at clinically relevant drug concentrations show synergy in selectively killing TSC2-deficient cells with limited toxicity in control cells. This drug combination inhibited tumor formation in xenograft mouse models and patient-derived cell models of TSC and caused tumor spheroid death in 3D culture. Importantly, 3D culture assays differentiated between the cytostatic effects of the mTORC1 inhibitor, rapamycin, and the cytotoxic effects of the nelfinavir/bortezomib combination. Through RNA sequencing, we determined that nelfinavir and bortezomib tip the balance of ER protein homeostasis of the already ER-stressed TSC2-deficient cells in favor of cell death. These findings have clinical relevance in stratified medicine to treat tumors that have compromised signaling through TSC and are inflexible in their capacity to restore ER homeostasis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Bortezomib/farmacología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/fisiología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nelfinavir/farmacología , Neoplasias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Int J Mol Sci ; 19(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584680

RESUMEN

Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Modelos Biológicos , Enfermedades de la Piel/patología , Telomerasa/metabolismo , Experimentación Animal , Proliferación Celular , Células Cultivadas , Senescencia Celular , Enfermedad Crónica , Fibroblastos/química , Fibroblastos/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Fenotipo , Enfermedades de la Piel/genética , Cicatrización de Heridas
15.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28202494

RESUMEN

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Asunto(s)
Fumarato Hidratasa/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Femenino , Fumaratos/metabolismo , Hematopoyesis , Histonas/metabolismo , Leucemia Mieloide Aguda/etiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Consumo de Oxígeno
16.
Eur J Immunol ; 46(9): 2222-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378515

RESUMEN

The inflammatory activation and recruitment of defined myeloid populations is essential for controlling the bridge between innate and adaptive immunity and shaping the immune response to microbial challenge. However, these cells exhibit significant functional heterogeneity and the inflammatory signals that differentially influence their effector characteristics are poorly characterized. In this study, we defined the phenotype of discrete subsets of effective antigen-presenting cells (APCs) in the peritoneal cavity during peritonitis. When the functional properties of these cells were compared to inflammatory monocyte-derived macrophages we noted differential responses to the immune-modulatory cytokine IL-10. In contrast to the suppressive actions of IL-10 on inflammatory macrophages, the recruitment of APCs was relatively refractory and we found no evidence for selective inhibition of APC differentiation. This differential response of myeloid cell subsets to IL-10 may thus have limited impact on development of potentially tissue-damaging adaptive immune responses, while restricting the magnitude of the inflammatory response. These findings may have clinical relevance in the context of peritoneal dialysis patients, where recurrent infections are associated with immune-mediated membrane dysfunction, treatment failure, and increased morbidity.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-10/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/patología , Biomarcadores , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Inmunomodulación , Inmunofenotipificación , Inflamación/patología , Interleucina-10/genética , Macrófagos/patología , Ratones , Ratones Noqueados , Peritonitis/inmunología , Peritonitis/metabolismo , Peritonitis/patología , Fenotipo , Receptores CCR2/metabolismo
17.
BMC Genomics ; 16: 1079, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26691352

RESUMEN

BACKGROUND: The YAC128 model of Huntington's disease (HD) shows substantial deficits in motor, learning and memory tasks and alterations in its transcriptional profile. We examined the changes in the transcriptional profile in the YAC128 mouse model of HD at 6, 12 and 18 months and compared these with those seen in other models and human HD caudate. RESULTS: Differential gene expression by genotype showed that genes related to neuronal function, projection outgrowth and cell adhesion were altered in expression. A Time-course ANOVA revealed that genes downregulated with increased age in wild-type striata were likely to be downregulated in the YAC128 striata. There was a substantial overlap of concordant gene expression changes in the YAC128 striata compared with those in human HD brain. Changes in gene expression over time showed fewer striatal YAC128 RNAs altered in abundance than in the HdhQ150 striata but there was a very marked overlap in transcriptional changes at all time points. Despite the similarities in striatal expression changes at 18 months the HdhQ150 mice showed widespread mHTT and ubiquitin positive inclusion staining in the striatum whereas this was absent in the YAC128 striatum. CONCLUSIONS: The gene expression changes in YAC128 striata show a very closely matched profile to that of HdhQ150 striata and are already significantly different between genotypes by six months of age, implying that the temporal molecular gene expression profiles of these models match very closely, despite differences in the prevalence of brain inclusion formation between the models. The YAC128 gene expression changes appear to correlate well with gene expression differences caused by ageing. A relatively small number of genes showed significant differences in expression between the striata of the two models and these could explain some of the phenotypic differences between the models.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/genética , Transcriptoma , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Enfermedad de Huntington/patología , Masculino , Ratones , Prevalencia
18.
J Med Virol ; 86(9): 1534-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24898764

RESUMEN

Vulval intraepithelial neoplasia is a precursor of vulval cancer and is commonly caused by infection with Human Papillomavirus (HPV). Development of topical treatments for vulval intraepithelial neoplasia requires appropriate in vitro models. This study evaluated the feasibility of primary culture of vulval intraepithelial neoplasia biopsy tissue to produce cell lines for use as in vitro models. A potentially immortal cell line was produced which gave rise to three monoclonal lines. These lines were characterized for HPV genomic integration and for viral gene expression using ligation-mediated PCR and quantitative PCR. Distinct patterns of viral integration and gene expression were observed among the three lines. Integration and expression data were validated using deep sequencing of mRNA. Gene ontology analyses of these data also demonstrated that expression of the HPV16 E4 and E5 proteins resulted in substantial changes in the composition of the cell membrane and extracellular space, associated with alterations in cell adhesion and differentiation. These data illustrate the diverse patterns of HPV gene expression potentially present within a single lesion. The derived cell lines provide useful models to investigate the biology of vulval intraepithelial neoplasia and the interactions between different HPV gene products and potential therapeutic agents.


Asunto(s)
Carcinoma in Situ/virología , Papillomavirus Humano 16/genética , Proteínas Oncogénicas Virales/genética , Neoplasias de la Vulva/virología , Carcinoma in Situ/enzimología , Línea Celular Tumoral , Femenino , Expresión Génica , Ontología de Genes , Papillomavirus Humano 16/enzimología , Humanos , Persona de Mediana Edad , Proteínas Oncogénicas Virales/biosíntesis , ARN Mensajero , Análisis de Secuencia de ARN , Células Tumorales Cultivadas , Neoplasias de la Vulva/enzimología
19.
Wound Repair Regen ; 22(3): 399-405, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24844339

RESUMEN

There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF < NF < CWF are candidates for a negative/impaired healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds.


Asunto(s)
Cicatriz/patología , Fibroblastos/patología , Úlcera de la Pierna/patología , Mucosa Bucal/patología , Piel/patología , Cicatrización de Heridas , Adulto , Proliferación Celular , Enfermedad Crónica , Cicatriz/genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis por Micromatrices , Cicatrización de Heridas/genética
20.
Science ; 344(6184): 645-648, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24762537

RESUMEN

Tissue-resident macrophages are heterogeneous as a consequence of anatomical niche-specific functions. Many populations self-renew independently of bone marrow in the adult, but the molecular mechanisms of this are poorly understood. We determined a transcriptional profile for the major self-renewing population of peritoneal macrophages in mice. These cells specifically expressed the transcription factor Gata6. Selective deficiency of Gata6 in myeloid cells caused substantial alterations in the transcriptome of peritoneal macrophages. Gata6 deficiency also resulted in dysregulated peritoneal macrophage proliferative renewal during homeostasis and in response to inflammation, which was associated with delays in the resolution of inflammation. Our investigations reveal that the tissue macrophage phenotype is under discrete tissue-selective transcriptional control and that this is fundamentally linked to the regulation of their proliferation renewal.


Asunto(s)
Proliferación Celular , Factor de Transcripción GATA6/fisiología , Macrófagos Peritoneales/inmunología , Animales , Factor de Transcripción GATA6/genética , Inflamación/inmunología , Ratones , Ratones Noqueados , Células Mieloides/inmunología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...