Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Water Process Eng ; 49: 103077, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35990175

RESUMEN

The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.

2.
Environ Sci Pollut Res Int ; 28(32): 43143-43172, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34164789

RESUMEN

Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Electrocoagulación , Electrodos , Residuos Industriales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...