Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 10142, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710820

RESUMEN

Mucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts. To investigate whether HYAL1 is involved in the differentiation and/or resorption activity of osteoclasts, and in bone remodeling in general, we analyzed several bone parameters in Hyal1 -/- mice and studied the differentiation and activity of their osteoclasts and osteoblasts when differentiated in vitro. These experiments revealed that, upon aging, HYAL1 deficient mice exhibit reduced femur length and a ~ 15% decrease in bone mineral density compared to wild-type mice. We found elevated osteoclast numbers in the femurs of these mice as well as an increase of the bone resorbing activity of Hyal1 -/- osteoclasts. Moreover, we detected decreased mineralization by Hyal1 -/- osteoblasts. Taken together with the observed accumulation of hyaluronic acid in Hyal1 -/- bones, these results support the premise that the catabolism of hyaluronic acid by osteoclasts and osteoblasts is an intrinsic part of bone remodeling.


Asunto(s)
Resorción Ósea , Mucopolisacaridosis , Animales , Densidad Ósea , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/deficiencia , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos/metabolismo
2.
Biochem Biophys Res Commun ; 479(2): 404-409, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27663665

RESUMEN

ATG9A is the only polytopic protein of the mammalian autophagy-related protein family whose members regulate autophagosome formation during macroautophagy. At steady state, ATG9A localizes to several intracellular sites, including the Golgi apparatus, endosomes and the plasma membrane, and it redistributes towards autophagosomes upon autophagy induction. Interestingly, the transport of yeast Atg9 to the pre-autophagosomal structure depends on its self-association, which is mediated by a short amino acid motif located in the C-terminal region of the protein. Here, we investigated whether the residues that align with this motif in human ATG9A (V515-C519) are also required for its trafficking in mammalian cells. Interestingly, our findings support that human ATG9A self-interacts as well, and that this process promotes transport of ATG9A molecules through the Golgi apparatus. Furthermore, our data reveal that the transport of ATG9A out of the ER is severely impacted after mutation of the conserved V515-C519 motif. Nevertheless, the mutated ATG9A molecules could still interact with each other, indicating that the molecular mechanism of self-interaction differs in mammalian cells compared to yeast. Using sequential amino acid substitutions of glycine 516 and cysteine 519, we found that the stability of ATG9A relies on both of these residues, but that only the former is required for efficient transport of human ATG9A from the endoplasmic reticulum to the Golgi apparatus.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Glicina/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Alanina/química , Secuencias de Aminoácidos , Proteínas Relacionadas con la Autofagia/genética , Membrana Celular/metabolismo , Cisteína/química , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Microscopía Fluorescente , Dominios Proteicos , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética
3.
Biochim Biophys Acta ; 1863(9): 2299-310, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27316455

RESUMEN

ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations. Deletion of amino acids L(340) to L(354) resulted in the retention of ATG9A in the endoplasmic reticulum. In addition, we found that substitution of the L(711)YM(713) sequence (located in the C-terminal region of ATG9A) by alanine residues severely impaired its transport through the Golgi apparatus. This defect could be corrected by oligomerization of the mutant protein with co-transfected wild-type ATG9A, suggesting that ATG9A oligomerization may help its sorting through biosynthetic compartments. Lastly, the study of the consequences of the LYM/AAA mutation on the intracellular trafficking of ATG9A highlighted that some newly synthesized ATG9A can bypass the Golgi apparatus to reach the plasma membrane. Taken together, these findings provide new insights into the intracellular pathways followed by ATG9A to reach different subcellular compartments, and into the intramolecular determinants that drive the sorting of this protein.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Vías Biosintéticas , Compartimento Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Polisacáridos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
4.
J Cell Sci ; 129(3): 557-68, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26698217

RESUMEN

How, in the absence of a functional mannose 6-phosphate (Man-6-P)-signal-dependent transport pathway, some acid hydrolases remain sorted to endolysosomes in the brain is poorly understood. We demonstrate that cathepsin D binds to mouse SEZ6L2, a type 1 transmembrane protein predominantly expressed in the brain. Studies of the subcellular trafficking of SEZ6L2, and its silencing in a mouse neuroblastoma cell line reveal that SEZ6L2 is involved in the trafficking of cathepsin D to endosomes. Moreover, SEZ6L2 can partially correct the cathepsin D hypersecretion resulting from the knockdown of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase in HeLa cells (i.e. in cells that are unable to synthesize Man-6-P signals). Interestingly, cleavage of SEZ6L2 by cathepsin D generates an N-terminal soluble fragment that induces neurite outgrowth, whereas its membrane counterpart prevents this. Taken together, our findings highlight that SEZ6L2 can serve as receptor to mediate the sorting of cathepsin D to endosomes, and suggest that proteolytic cleavage of SEZ6L2 by cathepsin D modulates neuronal differentiation.


Asunto(s)
Catepsina D/metabolismo , Proteínas de la Membrana/metabolismo , Neuritas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Endosomas/metabolismo , Endosomas/fisiología , Células HeLa , Humanos , Lisosomas/metabolismo , Lisosomas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuritas/fisiología , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatología , Transporte de Proteínas/fisiología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Uridina Difosfato/metabolismo
5.
Biochem Biophys Res Commun ; 446(4): 1155-60, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24667601

RESUMEN

It has long been known that liver lysosomes contain an endoglycosidase activity able to degrade the high molecular mass glycosaminoglycan hyaluronic acid (HA). The identification and cloning of a hyaluronidase with an acidic pH optimum, Hyal-1, suggested it might be responsible for this activity. However, we previously reported that this hydrolase could only be detected in pre-lysosomal compartments of the mouse liver using a zymography technique that allows the detection of Hyal-1 activity after SDS-PAGE ("renatured protein zymography"). Present work reveals that the activity highlighted by this technique belongs to a precursor form of Hyal-1 and that the lysosomal HA endoglycosidase activity of the mouse liver is accounted for by a proteolytically processed form of Hyal-1 that can only be detected using "native protein zymography". Indeed, the distribution of this form follows the distribution of ß-galactosidase, a well-established lysosomal marker, after fractionation of the mouse liver in a linear sucrose density gradient. In addition, both activities shift toward the lower density region of the gradient when a specific decrease of the lysosomal density is induced by Triton WR-1339 injection. The fact that only native protein zymography but not renatured protein zymography is able to detect Hyal-1 activity in lysosomes points to a non-covalent association of Hyal-1 proteolytic fragments or the existence of closely linked partners supporting Hyal-1 enzymatic activity. The knockdown of Hyal-1 results in an 80% decrease of total acid hyaluronidase activity in the mouse liver, confirming that Hyal-1 is a key actor of HA catabolism in this organ.


Asunto(s)
Hialuronoglucosaminidasa/análisis , Hialuronoglucosaminidasa/metabolismo , Lisosomas/enzimología , Animales , Técnicas de Silenciamiento del Gen , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/genética , Hígado/enzimología , Hígado/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Traffic ; 15(5): 500-15, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24502338

RESUMEN

The hyaluronidase Hyal-1 is an acid hydrolase that degrades hyaluronic acid (HA), a component of the extracellular matrix. It is often designated as a lysosomal protein. Yet few data are available on its intracellular localization and trafficking. We demonstrate here that in RAW264.7 murine macrophages, Hyal-1 is synthesized as a glycosylated precursor that is only weakly mannose 6-phosphorylated. Nevertheless, this precursor traffics to endosomes, via a mannose 6-phosphate-independent secretion/recapture mechanism that involves the mannose receptor. Once in endosomes, it is processed into a lower molecular mass form that is transported to lysosomes, where its activity could be detected using native gel zymography. Indeed, this activity co-distributed with lysosomal hydrolases in the densest fraction of a self-forming Percoll(TM) density gradient. Moreover, it shifted toward the lower density region, in parallel with those hydrolases, when a decrease of lysosomal density was induced by the endocytosis of sucrose. Interestingly, the activity of the processed form of Hyal-1 was largely underestimated when assayed by zymography after SDS-PAGE and subsequent renaturation of the proteins, by contrast to the full-length protein that could efficiently degrade HA in those conditions. These results suggest that noncovalent associations support the lysosomal activity of Hyal-1.


Asunto(s)
Hialuronoglucosaminidasa/metabolismo , Macrófagos/metabolismo , Transporte de Proteínas/fisiología , Animales , Endocitosis/fisiología , Endosomas/metabolismo , Glicosilación , Hidrolasas/metabolismo , Lectinas Tipo C/metabolismo , Lisosomas/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Manosafosfatos/metabolismo , Ratones , Receptores de Superficie Celular/metabolismo , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...