Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gait Posture ; 105: 125-131, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542885

RESUMEN

BACKGROUND: The Sit-to-Stand (STS) transition is one of the most used activities of daily living and vital for independence. Neurological, or physical injuries impairing functional mobility or sensory feedback often require rehabilitative programs or therapeutic interventions. Understanding the biomechanical elements of daily movements and the interaction between these elements may help inform rehabilitation protocols and optimize targeted interventions, such as stimulation protocols. RESEARCH QUESTION: What are the effects of different initial knee angle, arm facilitation and proprioceptive input on leg muscle activation patterns and balance during and after a sit-to-stand? METHODS: EMG of four lower limb muscles were recorded in 20 healthy participants as well centre-of-pressure sway amplitude and velocity, as participants stood from a seated position. Initial knee angles were set to various levels of extension (80°, 90°, 100°) and surface stability and arm facilitation were altered using a foam mat or crossing arms. Data were analysed across 3 phases of the STS transition. RESULTS: More extended knee angles resulted in greater mediolateral sway during each phase (p < .01) and had a detrimental effect on anterior-posterior sway in phases 1 and 3. EMG data suggested more extended initial knee angles also increased EMG activity of the Tibialis Anterior (p < .001) and Bicep Femoris (p < .02) within Phases 1 and 2 to assist lift and stabilisation. SIGNIFICANCE: Findings of this study outline phase-based muscle involvement as well as the compounding effects of reduced proprioceptive input and knee angle, on difficulty of the STS transition. Such results emphasising the need to take sensory and mobility issues into consideration when designing rehabilitative programs or stimulation control systems.


Asunto(s)
Actividades Cotidianas , Extremidad Inferior , Humanos , Articulación de la Rodilla/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Electromiografía
2.
Biomedicines ; 11(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36830867

RESUMEN

Transcutaneous spinal cord stimulation (tSCS) at the cervical level may facilitate improved upper-limb function in those with incomplete tetraplegia. While clinical trials are ongoing, there is still much debate regarding the transmission pathway as well as appropriate stimulation parameters. This study aimed to explore the extent to which cervical tSCS can induce mono-synaptic reflexes in discrete upper-limb motor pools and examine the effects of altering stimulus location and intensity. METHODS: Fourteen participants with intact nervous systems completed two laboratory visits, during which posterior root-muscle reflexes (PRMRs) were evoked via a 3 × 3 cathode matrix applied over the cervical spine. An incremental recruitment curve at the C7 vertebral level was initially performed to attain resting motor threshold (RMT) in each muscle. Paired pulses (1 ms square monophasic with inter-pulse interval of 50 ms) were subsequently delivered at a frequency of 0.25 Hz at two intensities (RMT and RMT + 20%) across all nine cathode positions. Evoked responses to the 1st (PRMR1) and 2nd (PRMR2) stimuli were recorded in four upper-limb muscles. RESULTS: A significant effect of the spinal level was observed in all muscles for PRMR1, with greater responses being recorded caudally. Contralateral stimulation significantly increased PRMR1 in Biceps Brachii (p < 0.05, F = 4.9, η2 = 0.29), Flexor Carpi Radialis (p < 0.05, F = 4.9, η2 = 0.28) and Abductor Pollicis Brevis (p < 0.01, F = 8.9, η2 = 0.89). Post-activation depression (PAD) was also significantly increased with contralateral stimulation in Biceps Brachii (p = 0.001, F = 9.3, η2 = 0.44), Triceps Brachii (p < 0.05, F = 5.4, η2 = 0.31) and Flexor Carpi Radialis (p < 0.001, F = 17.4, η2 = 0.59). CONCLUSIONS: A level of unilateral motor pool selectivity may be attained by altering stimulus intensity and location during cervical tSCS. Optimising these parameters may improve the efficacy of this neuromodulation method in clinical cohorts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...