Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc Mol Biol ; 133(1): e125, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32986282

RESUMEN

The lentivirus system enables efficient genetic modification of both dividing and non-dividing cells and therefore is a useful tool for elucidating developmental processes and disease pathogenesis. The development of third-generation lentiviruses has resulted in improved biosafety, low immunogenicity, and substantial packaging capabilities. However, because third-generation lentiviruses require successful co-transfection with four plasmids, this typically means that lower titers are attained. This is problematic, as it is often desirable to produce purified lentiviruses with high titers (>1 × 108 TU/ml), especially for in vivo applications. The manufacturing process for lentiviruses involves several critical experimental factors that can influence titer, purity, and transduction efficiency. Here, we describe a straightforward, stepwise protocol for the reproducible manufacture of high-titer third-generation lentiviruses (1 × 108 to 1 × 109 TU/ml). This optimized protocol enhances transgene expression by use of Lipofectamine transfection and optimized serum replacement medium, a single ultracentrifugation step, use of a sucrose cushion, and addition of a histone deacetylation inhibitor. Furthermore, we provide alternate methods for titration analyses, including functional and genomic integration analyses, using common laboratory techniques such as FACS as well as genomic DNA extraction and qPCR. These optimized methods will be beneficial for investigating developmental processes and disease pathogenesis in vitro and in vivo. © 2020 The Authors. Basic Protocol 1: Lentivirus production Support Protocol: Lentivirus concentration Basic Protocol 2: Lentivirus titration Alternate Protocol 1: Determination of viral titration by FACS analysis Alternate Protocol 2: Determination of viral titration by genome integration analysis.


Asunto(s)
Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Vectores Genéticos/genética , Lentivirus/genética , Transgenes , Animales , Técnicas de Cultivo de Célula , Línea Celular , Citometría de Flujo , Expresión Génica , Vectores Genéticos/biosíntesis , Vectores Genéticos/aislamiento & purificación , Células HEK293 , Humanos , Plásmidos , Transducción Genética , Transfección
2.
Stem Cell Res ; 48: 101945, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32791483

RESUMEN

The differentiation of patient-specific induced pluripotent stem cells (iPSCs) into specific neuronal subtypes has been exploited as an approach for modeling a variety of neurological disorders. However, achieving a highly pure population of neurons is challenging when using directed differentiation methods, especially for neuronal subtypes generated by complex and protracted protocols. In this study, we efficiently produced highly pure populations of regionally specified CNS neurons by using a modified NGN2-Puromycin direct conversion protocol. The protocol is amenable across a range of iPSC lines, with more than 95% of cells at day 21 positive for the neuronal marker MAP2. We found that conversion from pluripotent stem cells resulted in neurons from the central and peripheral nervous system; however, by incorporating a short CNS patterning step, we eliminated these peripheral neurons. Furthermore, we used the patterning step to control the rostral-caudal identity. This approach of sequential patterning and conversion produced pure populations of forebrain neurons, when patterned with SMAD inhibitors. Additionally, when SMAD inhibitors and WNT agonists were applied, the approach produced anterior hindbrain excitatory neurons and resulted in a neuronal population containing VSX2/SHOX2 V2a interneurons. Overall, this sequential patterning and conversion protocol can be used for the production of a variety of CNS excitatory neurons from patient-derived iPSCs, and is a highly versatile system for investigating early disease events for a range of neurological disorders including Alzheimer's disease, motor neurons disease and spinal cord injury.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Humanos , Neuronas
3.
Front Cell Dev Biol ; 6: 54, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868584

RESUMEN

Gene editing in human embryonic stem cells (hESCs) has been significantly enhanced by the discovery and development of CRISPR Cas9, a programmable nuclease system that can introduce targeted double-stranded breaks. The system relies on the optimal selection of a sgRNA sequence with low off-targets and high efficiency. We designed an improved monomeric red fluorescent protein reporter, GEmCherry2, for assessing CRISPR Cas9 activity and for optimizing sgRNA. By incorporating an out-of-frame sequence to the N-terminal of the red fluorescent protein mCherry, we created a visual tool for assessing the indel frequency after cutting with CRISPR Cas9. When a sgRNA-Cas9 construct is co-transfected with a corresponding GEmCherry2 construct, single nucleotide indels can move the GEmCherry2 sequence back in-frame and allow quantification and comparison of the efficiency of different sgRNA target sites by measuring red fluorescence. With this GEmCherry2 assay, we compared four target sites in the safe harbor AAVS1 locus and found significant differences in target site activity. We verified the activity using TIDE, which ranked our target sites in a similar order as the GEmCherry2 system. We also identified an AAV short inverted terminal repeat sequence within the Cas9 construct that, upon removal significantly improved transient transfection and expression in hESCs. Moreover, using GEmCherry2, we designed a sgRNA to target SORCS2 in hESCs and successfully introduced indels into the coding sequence of SORCS2.

4.
SLAS Discov ; 22(8): 1016-1025, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28287872

RESUMEN

Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Automatización , Adhesión Celular , Línea Celular , Reprogramación Celular , Fibroblastos/citología , Humanos , Retina/citología
5.
Sci Rep ; 6: 30552, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27506453

RESUMEN

Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies.


Asunto(s)
Separación Celular/métodos , Células Madre Embrionarias Humanas/citología , Células Ganglionares de la Retina/citología , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Campos Magnéticos , Células Ganglionares de la Retina/metabolismo
6.
Nat Biotechnol ; 34(3): 320-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26854476

RESUMEN

High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions.


Asunto(s)
Procedimientos Endovasculares , Corteza Motora/fisiología , Neuronas/fisiología , Stents , Animales , Catéteres , Angiografía Cerebral/métodos , Electrodos , Humanos , Ovinos
7.
Stem Cell Rev Rep ; 12(2): 179-88, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26589197

RESUMEN

We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.


Asunto(s)
Medios de Cultivo Condicionados/metabolismo , Células Madre Pluripotentes/citología , Retina/citología , Epitelio Pigmentado de la Retina/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Células Cultivadas , Células Epiteliales/citología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Fagocitosis/fisiología , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo , Pigmentación/fisiología , Células Madre Pluripotentes/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
8.
Transl Vis Sci Technol ; 3(4): 7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25774327

RESUMEN

Glaucoma, the worldwide leading cause of irreversible blindness, is characterized by progressive degeneration of the optic nerve and loss of retinal ganglion cells. Research into glaucoma pathogenesis has been hampered by difficulties in isolating and culturing retinal ganglion cells in vitro. However, recent improvements in laboratory techniques have enabled the generation of a variety of mature cell types from pluripotent stem cells, including retinal ganglion cells. Indeed, stem cell-based approaches have the potential to revolutionize the field by providing an unlimited source of cells for replacement therapies and by enabling development of in vitro disease models for drug screening and research. Consequently, research aimed at directing pluripotent stem cells to differentiate into retinal ganglion cells has expanded dramatically during the past decade, resulting in significant advances in technique and efficiency. In this paper, we review the methodology for retinal ganglion cell differentiation from pluripotent stem cells of both mouse and human origin and summarize how these techniques have opened up new avenues for modelling glaucoma. Generation of stem cell-derived retinal ganglion cells will have significant translational values, providing an in vitro platform to study the mechanisms responsible for pathogenesis and for drug screening to improve treatment options, as well as for the development of cell therapies for optic neuropathies such as glaucoma.

9.
Am Nat ; 182(6): 834-40, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24231542

RESUMEN

Effective communication requires reliable signals and competent receptors. Theoretical and empirical accounts of animal signaling focus overwhelmingly on the capacity of the signaler to convey the message. Nevertheless, the intended receiver's ability to detect a signal depends on the condition of its receptor organs, as documented for humans. The impact of receptor organ condition on signal reception and its consequences for functional behavior are poorly understood. Social insects use antennae to detect chemical odors that distinguish between nestmates and enemies, reacting aggressively to the latter. We investigated the impact of antennal condition, determined by the density of sensilla, on the behavior of the weaver ant Oecophylla smaragdina. Worker aggression depended upon the condition of their antennae: workers with fewer sensilla on their antennae reacted less aggressively to nonnestmate enemies. These novel data highlight the largely unappreciated significance of receptor organ condition for animal communication and may have implications for coevolutionary processes in animal communication.


Asunto(s)
Comunicación Animal , Hormigas/fisiología , Antenas de Artrópodos/ultraestructura , Conducta Social , Agresión , Animales , Reconocimiento en Psicología
10.
Naturwissenschaften ; 99(3): 245-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22328072

RESUMEN

Social insect colonies exhibit highly coordinated responses to ecological challenges by acquiring information that is disseminated throughout the colony. Some responses are coordinated directly from the signals produced by individuals that acquired the information. Other responses may require information to be transferred indirectly through a third party, thereby requiring colony-wide retention of information. Social insects use colony signature odours to distinguish between nestmates and non-nestmates, and the level of aggression between non-nestmates typically varies according to the distance between colonies and thus their history of interactions. Such coordinated, colony-specific responses may require information about particular odours to be disseminated and retained across the colony. Our field experiments with weaver ants reveal colony-wide, indirect acquisition and retention of the signature odours of a different colony with which they had experienced aggression. These data highlight the significance of interaction history and suggest the presence of a collective memory.


Asunto(s)
Agresión/fisiología , Comunicación Animal , Hormigas/fisiología , Conducta Animal/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...