Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38562904

RESUMEN

Recent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells. In contrast to expectations, blocking the CD28 MM survival signal with abatacept (CTLA4-Ig) accelerated disease relapse following CAR T therapy in preclinical models, potentially due to blocking CD28 signaling in CAR T cells. Knockout studies confirmed that endogenous CD28 expressed on BBζ CAR T cells drove in vivo anti-MM activity. Mechanistically, CD28 reprogrammed mitochondrial metabolism to maintain redox balance and CAR T cell proliferation in the MM BME. Transient CD28 inhibition with abatacept restrained rapid BBζ CAR T cell expansion and limited inflammatory cytokines in the MM BME without significantly affecting long-term survival of treated mice. Overall, data directly demonstrate a need for CD28 signaling for sustained in vivo function of CAR T cells and indicate that transient CD28 blockade could reduce cytokine release and associated toxicities.

2.
iScience ; 26(11): 108303, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026169

RESUMEN

Neuroblastoma is the most common extracranial solid tumor in children. MYCN amplification is detected in almost half of high-risk cases and is associated with poorly differentiated tumors, poor patient prognosis and poor response to therapy, including retinoids. We identify the aryl hydrocarbon receptor (AhR) as a transcription factor promoting the growth and suppressing the differentiation of MYCN-amplified neuroblastoma. A neuroblastoma specific AhR transcriptional signature reveals an inverse correlation of AhR activity with patients' outcome, suggesting AhR activity is critical for disease progression. AhR modulates chromatin structures, reducing accessibility to regions responsive to retinoic acid. Genetic and pharmacological inhibition of AhR results in induction of differentiation. Importantly, AhR antagonism with clofazimine synergizes with retinoic acid in inducing differentiation both in vitro and in vivo. Thus, we propose AhR as a target for MYCN-amplified neuroblastoma and that its antagonism, combined with current standard-of-care, may result in a more durable response in patients.

3.
Front Oncol ; 13: 1120329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816919

RESUMEN

Introduction: Bladder cancer is a heterogenous disease and the emerging knowledge on molecular classification of bladder tumors may impact treatment decisions based on molecular subtype. Pre-clinical models representing each subtype are needed to test novel therapies. Carcinogen-induced bladder cancer models represent heterogeneous, immune-competent, pre-clinical testing options with many features found in the human disease. Methods: Invasive bladder tumors were induced in C57BL/6 mice when continuously exposed to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Tumors were excised and serially passed by subcutaneous implantation into sex-matched syngeneic C57BL/6 hosts. Eight lines were named BBN-induced Urothelium Roswell Park (BURP) tumor lines. BURP lines were characterized by applying consensus molecular classification to RNA expression, histopathology, and immune profiles by CIBERSORT. Two lines were further characterized for cisplatin response. Results: Eight BURP tumor lines were established with 3 male and 3 female BURP tumor lines, having the basal/squamous (BaSq) molecular phenotype and morphology. BURP-16SR was established from a male mouse and has a stromal-rich (SR) molecular phenotype and a sarcomatoid carcinoma morphology. BURP-19NE was established from a male mouse and has a neuroendocrine (NE)-like molecular phenotype and poorly differentiated morphology. The established BURP tumor lines have unique immune profiles with fewer immune infiltrates compared to their originating BBN-induced tumors. The immune profiles of the BURP tumor lines capture some of the features observed in the molecular classifications of human bladder cancer. BURP-16SR growth was inhibited by cisplatin treatment, while BURP-24BaSq did not respond to cisplatin. Discussion: The BURP lines represent several molecular classifications, including basal/squamous, stroma-rich, and NE-like. The stroma-rich (BURP-16SR) and NE-like (BURP-19NE) represent unique immunocompetent models that can be used to test novel treatments in these less common bladder cancer subtypes. Six basal/squamous tumor lines were established from both male and female mice. Overall, the BURP tumor lines have less heterogeneity than the carcinogen-induced tumors and can be used to evaluate treatment response without the confounding mixed response often observed in heterogeneous tumors. Additionally, basal/squamous tumor lines were established and maintained in both male and female mice, thereby allowing these tumor lines to be used to compare differential treatment responses between sexes.

4.
Am J Clin Exp Urol ; 9(6): 416-434, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993263

RESUMEN

The evolving paradigm of the molecular classification of bladder cancer requires models that represent the classifications with less heterogeneity. Robust transcriptome based molecular classifications are essential to address tumor heterogeneity. Patient derived models (PDMs) are a powerful preclinical tool to study specific tumor compartments. We tested if the consensus molecular subtype analysis was applicable to PDMs and evaluated the tumor compartment each model represents. PDMs derived from surgical specimens were established as xenografts (PDX), organoids (PDO), and spheroids (PDS). The surgical specimens and PDMs were molecularly characterized by RNA sequencing. PDMs that were established in immune deficient mice or in vitro significantly downregulated transcripts related to the immune and stromal compartments compared to the surgical specimens. However, PDMs upregulate a patient-specific bladder cancer cell signal which allowed for analysis of cancer cell pathways independent of the tumor microenvironment. Based on transcriptomic signatures, PDMs are more similar to their surgical specimen than the model type; indicating that the PDMs retained unique features of the tumor from which the PDM was derived. When comparing models, PDX models were the most similar to the surgical specimen, while PDO and PDS models were most similar to each other. When the consensus molecular subtype classification system was applied to both the surgical samples and the three PDMs, good concordance was found between all samples indicating that this system of classification can be applied to PDO and PDS models. PDMs reduce tumor heterogeneity and allow analysis of tumor cells while maintaining the gene expression profile representative of the original tumor.

5.
Nat Commun ; 11(1): 52, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911608

RESUMEN

Prostatic luminal epithelial cells secrete high levels of acetylated polyamines into the prostatic lumen, sensitizing them to perturbations of connected metabolic pathways. Enhanced flux is driven by spermidine/spermine N1-acetyltransferase (SSAT) activity, which acetylates polyamines leading to their secretion and drives biosynthetic demand. The methionine salvage pathway recycles one-carbon units lost to polyamine biosynthesis to the methionine cycle to overcome stress. Prostate cancer (CaP) relies on methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme, to relieve strain. Here, we show that inhibition of MTAP alongside SSAT upregulation is synergistic in androgen sensitive and castration recurrent CaP models in vitro and in vivo. The combination treatment increases apoptosis in radical prostatectomy ex vivo explant samples. This unique high metabolic flux through polyamine biosynthesis and connected one carbon metabolism in CaP creates a metabolic dependency. Enhancing this flux while simultaneously targeting this dependency in prostate cancer results in an effective therapeutic approach potentially translatable to the clinic.


Asunto(s)
Metionina/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Adenina/administración & dosificación , Adenina/análogos & derivados , Animales , Apoptosis , Línea Celular Tumoral , Quimioterapia Combinada , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , Pirrolidinas/administración & dosificación , Terapia Recuperativa , Espermina/administración & dosificación , Espermina/análogos & derivados , Espermina/metabolismo
6.
Oncotarget ; 8(61): 103758-103774, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262598

RESUMEN

Folate impacts the genome and epigenome by feeding into one-carbon metabolism to produce critical metabolites, deoxythymidine monophosphate and s-adenosylmethionine. The impact of folate exposure and intervention timing on cancer progression remains controversial. Due to polyamine metabolism's extraordinary biosynthetic flux in prostate cancer (CaP) we demonstrated androgen stimulated CaP is susceptible to dietary folate deficiency. We hypothesized dietary folate levels may also affect castration recurrent CaP. We used the CWR22 human xenograft model which recurs following androgen withdrawal. Engrafted mice were fed a folate depleted or supplemented diet beginning at androgen withdrawal, or prior to xenograft implantation. Both folate depletion and supplementation at the time of withdrawal significantly decreased recurrence incidence. Folate supplementation prior to xenograft implantation increased time to recurrence, suggesting a protective role. By contrast, folate depleted recurrent tumors exhibited transcriptional adaptive responses that maintained high polyamine levels at the expense of increased DNA damage and DNA methylation alterations. Mining of publically available data demonstrated folate related pathways are exceptionally dysregulated in human CaP, which correlated with decreased time to biochemical recurrence. These findings highlight the potential for novel therapeutic interventions that target these metabolic pathways in CaP and provide a rationale to apply such strategies alongside androgen withdrawal.

7.
Clin Cancer Res ; 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27458247

RESUMEN

PURPOSE: We recently demonstrated that glutamate receptor GRM1 was expressed at high levels in castration-resistant prostate cancer (CR-PCa) tissues and cells. Herein, we determined the relationship between GRM1 and AR, PSA, and tumor growth, remission, and recurrence in preclinical PCa models. The effect of alterations in GRM1 expression was also investigated on PCa cell growth, migration and invasion. EXPERIMENTAL DESIGN: We used quantitative gene expression and immunohistochemistry to define the temporal association between GRM1 expression and AR, PSA, and tumor growth during CR progression in CWR22 (n = 59) and LuCaP 35 (n = 12) PCa xenografts. The effect of alterations in GRM1 expression levels on growth, migration, and invasion was investigated in GRM1-overexpressed or -silenced PCa cell lines. The effect of DHT on GRM1 expression was determined in the presence or absence of the antiandrogen bicalutamide. RESULTS: We found that GRM1 transcript and tissue expression directly correlated with growth and AR and PSA expression in hormone-sensitive (HS), castrated, and CR tumor xenografts. GRM1 overexpression or silencing directly correlated with PCa cell proliferation, migration, and invasion. DHT increased GRM1 expression via an AR-dependent manner in HS- and CR-PCa cell lines. CONCLUSIONS: This is a first report of GRM1 as an androgen and AR-target gene. GRM1 expression directly correlated with tumor growth, regression, and recurrence and may contribute to CR-progression of PCa in preclinical models. Further studies are needed to define the utility of GRM1 as a druggable target or biomarker for PCa.

8.
Prostate ; 76(4): 359-68, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26642837

RESUMEN

BACKGROUND: CWR22 is a human xenograft model of primary prostate cancer (PCa) that is often utilized to study castration recurrent (CR) PCa. CWR22 recapitulates clinical response to androgen deprivation therapy (ADT), in that tumors regress in response to castration, but can recur after a period of time. METHODS: Two cohorts of mice, totaling 117 mice were implanted with CWR22, allowed to develop tumors, castrated by pellet removal and followed for a period of 32 and 50 weeks. Mice presenting with tumors >2.0 cm(3) at the primary site, moribund appearance, or palpable masses other than the primary tumor were sacrificed prior to the endpoint of the study. Tumor tissue, serum, and abnormal lesions were collected upon necropsy and analyzed by IHC, H&E, and PCR for presence of metastatic lesions arising from CWR22. RESULTS: Herein, we report that CWR22 progresses after castration from a primary, hormonal therapy-naïve tumor to metastatic disease in 20% of castrated nude mice. Histological examination of CWR22 primary tumors revealed distinct pathologies that correlated with metastatic outcome after castration. CONCLUSION: This is the first report and characterization of spontaneous metastasis in the CWR22 model, thus, CWR22 is a bona-fide model of clinical PCa representing the full progression from androgen-sensitive, primary PCa to metastatic CR-PCa.


Asunto(s)
Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata/patología , Andrógenos , Animales , Biomarcadores de Tumor/análisis , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Inmunohistoquímica , Metástasis Linfática/patología , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/patología , Trasplante de Neoplasias , Neoplasias Hormono-Dependientes , Orquiectomía , Fenotipo , Neoplasias de la Próstata/cirugía , Testosterona/sangre
9.
Cancer Res ; 73(2): 942-52, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23149920

RESUMEN

Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via ß1, ß4, and αVß3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and ß1 and αVß3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that ß1 was markedly upregulated compared with expression of other ß subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as ß1, αVß3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, ß1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, ß1 and αVß3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Próstata/patología , Animales , Células de la Médula Ósea/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Selectina E/metabolismo , Endotelio Vascular/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Masculino , Ratones
10.
Cancer Prev Res (Phila) ; 2(12): 1065-75, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19934341

RESUMEN

Green tea polyphenols (GTP) have been reported to inhibit DNA methylation in cultured cells. Here, we tested whether oral consumption of GTPs affects normal or cancer-specific DNA methylation in vivo, using mice. Wild-type (WT) and transgenic adenocarcinoma of mouse prostate (TRAMP) mice were given 0.3% GTPs in drinking water beginning at 4 weeks of age. To monitor DNA methylation, we measured 5-methyl-deoxycytidine (5mdC) levels, methylation of the B1 repetitive element, and methylation of the Mage-a8 gene. Each of these parameters were unchanged in prostate, gut, and liver from WT mice at both 12 and 24 weeks of age, with the single exception of a decrease of 5mdC in the liver at 12 weeks. In GTP-treated TRAMP mice, 5mdC levels and the methylation status of four loci hypermethylated during tumor progression were unaltered in TRAMP prostates at 12 or 24 weeks. Quite surprisingly, GTP treatment did not inhibit tumor progression in TRAMP mice, although known pharmacodynamic markers of GTPs were altered in both WT and TRAMP prostates. We also administered 0.1%, 0.3%, or 0.6% GTPs to TRAMP mice for 12 weeks and measured 5mdC levels and methylation of B1 and Mage-a8 in prostate, gut, and liver tissues. No dose-dependent alterations in DNA methylation status were observed. Genome-wide DNA methylation profiling using the HpaII tiny fragment enrichment by ligation-mediated PCR assay also revealed no significant hypomethylating effect of GTP. These data indicate that oral administration of GTPs does not affect normal or cancer-specific DNA methylation in the murine prostate.


Asunto(s)
Adenocarcinoma/genética , Metilación de ADN , Flavonoides/farmacología , Fenoles/farmacología , Próstata/patología , Neoplasias de la Próstata/genética , , Adenocarcinoma/patología , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/fisiología , Flavonoides/farmacocinética , Guanosina Trifosfato/metabolismo , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenoles/farmacocinética , Polifenoles , Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular
11.
Cancer Res ; 69(3): 967-75, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19141646

RESUMEN

Calcitriol (1,25-dihydroxycholecalciferol), the major active form of vitamin D, is antiproliferative in tumor cells and tumor-derived endothelial cells (TDEC). These actions of calcitriol are mediated at least in part by vitamin D receptor (VDR), which is expressed in many tissues including endothelial cells. To investigate the role of VDR in calcitriol effects on tumor vasculature, we established TRAMP-2 tumors subcutaneously into either VDR wild-type (WT) or knockout (KO) mice. Within 30 days post-inoculation, tumors in KO mice were larger than those in WT (P < 0.001). TDEC from WT expressed VDR and were able to transactivate a reporter gene whereas TDEC from KO mice were not. Treatment with calcitriol resulted in growth inhibition in TDEC expressing VDR. However, TDEC from KO mice were relatively resistant, suggesting that calcitriol-mediated growth inhibition on TDEC is VDR-dependent. Further analysis of the TRAMP-C2 tumor sections revealed that the vessels in KO mice were enlarged and had less pericyte coverage compared with WT (P < 0.001). Contrast-enhanced magnetic resonance imaging showed an increase in vascular volume of TRAMP tumors grown in VDR KO mice compared with WT mice (P < 0.001) and FITC-dextran permeability assay suggested a higher extent of vascular leakage in tumors from KO mice. Using ELISA and Western blot analysis, there was an increase of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, angiopoietin 1, and platelet-derived growth factor-BB levels observed in tumors from KO mice. These results indicate that calcitriol-mediated antiproliferative effects on TDEC are VDR-dependent and loss of VDR can lead to abnormal tumor angiogenesis.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Calcitriol/farmacología , Células Endoteliales/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Receptores de Calcitriol/metabolismo , Adenocarcinoma/irrigación sanguínea , Angiopoyetina 1/biosíntesis , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Masculino , Ratones , Ratones Noqueados , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias de la Próstata/irrigación sanguínea , Proteínas Proto-Oncogénicas c-sis/biosíntesis , Receptores de Calcitriol/biosíntesis , Receptores de Calcitriol/deficiencia , Receptores de Calcitriol/genética , Factor A de Crecimiento Endotelial Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...