Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5018, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866745

RESUMEN

Atmospheric rivers (ARs), responsible for extreme weather conditions, are mid-latitude systems that can cause significant damage to coastal areas. While forecasting ARs beyond two weeks remains a challenge, past research suggests potential benefits may come from properly accounting for the changes in sea surface temperature (SST) through air-sea interactions. In this paper, we investigate the impact of ARs on SST over the North Pacific by analyzing 25 years of ocean reanalysis data using an SST budget equation. We show that in the region of strong ocean modification, ocean dynamics can offset over 100% of the anomalous SST warming that would otherwise arise from atmospheric forcing. Among all ocean processes, ageostrophic advection and vertical mixing (diffusion and entrainment) are the most important factors in modifying the SST tendency response. The SST tendency response to ARs varies spatially. For example, in coastal California, the driver of enhanced SST warming is the reduction in ageostrophic advection due to anomalous southerly winds. Moreover, there is a large region where the SST shows a warming response to ARs due to the overall reduction in the total clouds and subsequent increase in total incoming shortwave radiation.

2.
Sci Adv ; 10(18): eadj0777, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691611

RESUMEN

Open-ocean polynyas formed over the Maud Rise, in the Weddell Sea, during the winters of 2016-2017. Such polynyas are rare events in the Southern Ocean and are associated with deep convection, affecting regional carbon and heat budgets. Using an ocean state estimate, we found that during 2017, early sea ice melting occurred in response to enhanced vertical mixing of heat, which was accompanied by mixing of salt. The melting sea ice compensated for the vertically mixed salt, resulting in a net buoyancy gain. An additional salt input was then necessary to destabilize the upper ocean. This came from a hitherto unexplored polynya-formation mechanism: an Ekman transport of salt across a jet girdling the northern flank of the Maud Rise. Such transport was driven by intensified eastward surface stresses during 2015-2018. Our results illustrate how highly localized interactions between wind, ocean flow and topography can trigger polynya formation in the open Southern Ocean.

3.
Sci Adv ; 9(38): eadh7746, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729403

RESUMEN

Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950-1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans' water masses.

4.
Geophys Res Lett ; 49(4): e2021GL096699, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35865998

RESUMEN

Airborne lidar altimetry can measure the sea surface height (SSH) over scales ranging from hundreds of kilometers to a few meters. Here, we analyze the spectrum of SSH observations collected during an airborne lidar campaign conducted off the California coast. We show that the variance in the surface wave band can be over 20 times larger than the variance at submesoscales and that the observed SSH variability is sensitive to the directionality of surface waves. Our results support the hypothesis that there is a spectral gap between meso-to-submesoscale motions and small-scale surface waves and also indicate that aliasing of surface waves into lower wavenumbers may complicate the interpretation of SSH spectra. These results highlight the importance of better understanding the contributions of different physics to the SSH variability and considering the SSH spectrum as a continuum in the context of future satellite altimetry missions.

5.
Front Mar Sci ; 62019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31534948

RESUMEN

There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017-2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.

6.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130273, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891396

RESUMEN

Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation.

7.
Science ; 295(5558): 1275-7, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11847337

RESUMEN

Autonomous Lagrangian Circulation Explorer floats recorded temperatures in depths between 700 and 1100 meters in the Southern Ocean throughout the 1990s. These temperature records are systematically warmer than earlier hydrographic temperature measurements from the region, suggesting that mid-depth Southern Ocean temperatures have risen 0.17 degrees C between the 1950s and the 1980s. This warming is faster than that of the global ocean and is concentrated within the Antarctic Circumpolar Current, where temperature rates of change are comparable to Southern Ocean atmospheric temperature increases.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(2 Pt 2): 026307, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11863653

RESUMEN

Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA