Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 195(3): 449-66, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22024163

RESUMEN

Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora B(S331A), in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Serina/genética , Secuencia de Aminoácidos , Animales , Aurora Quinasa B , Aurora Quinasas , Células CHO , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cricetinae , Activación Enzimática , Humanos , Cinetocoros/metabolismo , Microscopía Fluorescente , Mitosis , Datos de Secuencia Molecular , Paclitaxel/farmacología , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo
2.
Cancer Res ; 67(23): 11117-22, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18056434

RESUMEN

Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.


Asunto(s)
Proteína BRCA1/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/efectos de los fármacos , Desinfectantes/sangre , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Formaldehído/sangre , Acetaldehído/farmacología , Acroleína/farmacología , Aldehídos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Pollos , Reparación del ADN/efectos de los fármacos , Desinfectantes/farmacología , Anemia de Fanconi , Formaldehído/farmacología , Glutatión/metabolismo , Glioxal/farmacología , Piruvaldehído/farmacología , Recombinación Genética , Transducción de Señal
4.
EMBO J ; 26(11): 2719-31, 2007 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-17491592

RESUMEN

The checkpoint kinase 1 (Chk1) preserves genome integrity when replication is performed on damaged templates. Recently, Chk1 has also been implicated in regulating different aspects of unperturbed S phase. Using mammalian and avian cells with compromised Chk1 activity, we show that an increase in active replicons compensates for inefficient DNA polymerisation. In the absence of damage, loss of Chk1 activity correlates with the frequent stalling and, possibly, collapse of active forks and activation of adjacent, previously suppressed, origins. In human cells, super-activation of replication origins is restricted to pre-existing replication factories. In avian cells, in contrast, Chk1 deletion also correlates with the super-activation of replication factories and loss of temporal continuity in the replication programme. The same phenotype is induced in wild-type avian cells when Chk1 or ATM/ATR is inhibited. These observations show that Chk1 regulates replication origin activation and contributes to S-phase progression in somatic vertebrate cells.


Asunto(s)
Replicación del ADN/genética , Proteínas Quinasas/metabolismo , Origen de Réplica/genética , Replicón/genética , Fase S/genética , Animales , Bromodesoxiuridina , Cafeína/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Replicación del ADN/fisiología , Células HeLa , Humanos , Microscopía Fluorescente , Origen de Réplica/efectos de los fármacos , Origen de Réplica/fisiología , Fase S/fisiología
5.
Cell Cycle ; 6(8): 982-92, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17404511

RESUMEN

Centrosome amplification is frequently observed in tumor cells exposed to genotoxic stress, however the underlying mechanisms and biological consequences are poorly understood. Here, we show that the anti-metabolite and alkylating agent 6-thioguanine (6-TG) induces centrosome amplification resulting in the formation of multi-polar spindles when damaged cells subsequently enter mitosis. These aberrant, multi-polar mitoses are frequently resolved by asymmetric cell divisions causing unequal segregation of genetic material and cell death in one or both daughter products. We show that this phenomenon is associated with transient cell cycle delay in S- and G(2)-phase and is dependent on DNA mismatch repair (DNA MMR) proficiency and Chk1 protein kinase activity. Although Chk1-deficient cells do not exhibit cell cycle delay, centrosome amplification, or multi-polar spindle formation, continued cell cycle progression in the presence of 6-TG eventually results in increased levels of mitotic catastrophe, most probably due to mitosis with incompletely replicated DNA. Taken together, these results reveal novel mechanisms of cell killing by 6-TG and underscore the importance of interactions between cell cycle checkpoints and DNA MMR in determining the fate of cells bearing DNA damage.


Asunto(s)
Alquilantes/toxicidad , Centrosoma/efectos de los fármacos , Daño del ADN , Reparación de la Incompatibilidad de ADN , Proteínas Quinasas/fisiología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Centrosoma/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Humanos , Modelos Biológicos , Proteínas Quinasas/genética , Huso Acromático/efectos de los fármacos , Tioguanina/toxicidad , Células Tumorales Cultivadas
6.
Cell Cycle ; 6(7): 810-3, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17377502

RESUMEN

In vertebrate cells Chk1 is essential for multiple checkpoint responses to acute DNA damage or replication blocks, however potential functions for Chk1 during unperturbed cell cycles have remained less well characterised. In the past few years a role for Chk1 in timing the onset of mitosis in the absence of exogenous perturbations via regulation of Cdc25 family phosphatases has been documented. Furthermore, a recent report shows that Chk1 is also required for the spindle checkpoint which protects against spontaneous chromosome mis-segregation during mitotic cell division. Specifically, Chk1 is required for proper regulation of the mitotic Aurora-B kinase which ensures that anaphase proceeds only once all kinetochores have achieved bipolar attachment to microtubules and are under tension.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Genes cdc/fisiología , Mitosis/fisiología , Proteínas Quinasas/metabolismo , Anafase/genética , Animales , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Segregación Cromosómica/genética , Humanos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
7.
Dev Cell ; 12(2): 247-60, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276342

RESUMEN

The spindle checkpoint delays anaphase onset in cells with mitotic spindle defects. Here, we show that Chk1, a component of the DNA damage and replication checkpoints, protects vertebrate cells against spontaneous chromosome missegregation and is required to sustain anaphase delay when spindle function is disrupted by taxol, but not when microtubules are completely depolymerized by nocodazole. Spindle checkpoint failure in Chk1-deficient cells correlates with decreased Aurora-B kinase activity and impaired phosphorylation and kinetochore localization of BubR1. Furthermore, Chk1 phosphorylates Aurora-B and enhances its catalytic activity in vitro. We propose that Chk1 augments spindle checkpoint signaling and is required for optimal regulation of Aurora-B and BubR1 when kinetochores produce a weakened signal. In addition, Chk1-deficient cells exhibit increased resistance to taxol. These results suggest a mechanism through which Chk1 could protect against tumorigenesis through its role in spindle checkpoint signaling.


Asunto(s)
Proteínas Quinasas/metabolismo , Huso Acromático/enzimología , Animales , Aurora Quinasa B , Aurora Quinasas , Biopolímeros/metabolismo , Catálisis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Inestabilidad Cromosómica/efectos de los fármacos , Inestabilidad Cromosómica/genética , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Células HCT116 , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/enzimología , Microtúbulos/efectos de los fármacos , Microtúbulos/enzimología , Neoplasias/patología , Paclitaxel/farmacología , Fosforilación/efectos de los fármacos , Prometafase/efectos de los fármacos , Proteínas Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Huso Acromático/efectos de los fármacos
8.
Mol Cell Biol ; 26(8): 3319-26, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581803

RESUMEN

Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1(-/-) chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1(-/-) cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3(-/-) DT40 cells. Rather, we observed an increased number of replication fibers in Chk1(-/-) cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1(-/-) cells are associated with the accumulation of aberrant replication fork structures.


Asunto(s)
Replicación del ADN/genética , ADN de Cadena Simple/genética , Proteínas Quinasas/metabolismo , Fase S , Animales , Anticuerpos Monoclonales/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Cromosomas , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Immunoblotting , Cinética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , ARN Interferente Pequeño/farmacología , Estaurosporina/análogos & derivados , Estaurosporina/farmacología
9.
Subcell Biochem ; 40: 107-17, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17623903

RESUMEN

Eukaryotic cells respond to DNA damage or blocks to DNA replication by triggering a variety of "checkpoint" responses which delay cell cycle progression, modulate DNA replication, and facilitate DNA repair. Checkpoints play a vital role in maintaining genome integrity, particularly under conditions of genotoxic stress, and mutations in checkpoint genes can predispose to cancer and aging. Checkpoints are best understood at the molecular level in model organisms such as fission yeast, where the presence of aberrant DNA structures is sensed and relayed via signal transduction pathways to activate the checkpoint effector kinases, Chk1 and Cds1/ Chk2, which implement appropriate responses. Many of the yeast checkpoint sensor, transducer, and effector proteins are conserved in vertebrate cells, raising the question of whether they function in a similar or analogous way. DT40 cells provide a particularly tractable experimental system for genetic and biochemical dissection of checkpoints in vertebrates. Thus far, gene knockouts in DT40 have revealed that the Chk1 and Chk2 checkpoint effector kinases control a very different range of checkpoint responses in vertebrates compared to yeast. In future, these and other DT40 mutants will provide powerful tools for understanding the molecular basis of these unexpected differences and detailed studies of checkpoint mechanisms.


Asunto(s)
Linfocitos B/citología , Daño del ADN , Replicación del ADN , Animales , Ciclo Celular , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe
10.
Subcell Biochem ; 40: 355-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17623920

RESUMEN

Chromosome condensation during mitosis is associated with phosphorylation of histone H3 at serine 10 (pS10H3). Detection of pS10H3 phosphorylation using phospho-specific antibodies in combination with DNA content flow cytometry provides a rapid and accurate means of determining the percentage of mitotic cells in a population. Using the spindle poison nocodazole to trap mitotic cells it is possible to determine the rate at which cells accumulate in mitosis with time. By comparing the rates of mitotic accumulation before and after DNA damage it is possible to gauge the efficiency with which the G2 checkpoint blocks entry to mitosis. Because DNA content is measured simultaneously with pS10H3 fluorescence this method can also be used to identify cells which enter mitosis with incompletely replicated DNA as a result of S-M checkpoint failure during DNA synthesis inhibition.


Asunto(s)
Índice Mitótico , Animales , Citometría de Flujo , Nocodazol/farmacología , Fosforilación , Huso Acromático/efectos de los fármacos
11.
Subcell Biochem ; 40: 359-61, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17623921

RESUMEN

The ability to purify cells in specific phases of the cell cycle in sufficient quantities for biochemical analysis or to obtain a "synchronized" population of living cells enriched in a particular phase is of great value for studying a wide range of cell cycle processes. Transformed tumour cell lines, such as DT40, can be arrested and released from specific points in the cell cycle using drugs which inhibit DNA or protein synthesis or interfere with mitotic spindle function, however such drugs are frequently toxic and may themselves perturb the cell cycle process or phenomenon under study. Centrifugal elutriation provides a means of separating an unperturbed culture of living cells into highly enriched G1-, S-, and G2/ M-phase fractions. The resulting cell fractions can be analysed directly for protein and mRNA expression or returned to culture and their subsequent progression through the cell cycle monitored by flow cytometry, microscopy, or other techniques.


Asunto(s)
Ciclo Celular , Animales , Linfocitos B/citología , Línea Celular , Centrifugación , Pollos
12.
Mol Cell Biol ; 25(2): 563-74, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15632059

RESUMEN

We investigated mitotic delay during replication arrest (the S-M checkpoint) in DT40 B-lymphoma cells deficient in the Chk1 or Chk2 kinase. We show here that cells lacking Chk1, but not those lacking Chk2, enter mitosis with incompletely replicated DNA when DNA synthesis is blocked, but only after an initial delay. This initial delay persists when S-M checkpoint failure is induced in Chk2-/- cells with the Chk1 inhibitor UCN-01, indicating that it does not depend on Chk1 or Chk2 activity. Surprisingly, dephosphorylation of tyrosine 15 did not accompany Cdc2 activation during premature entry to mitosis in Chk1-/- cells, although mitotic phosphorylation of cyclin B2 did occur. Previous studies have shown that Chk1 is required to stabilize stalled replication forks during replication arrest, and strikingly, premature mitosis occurs only in Chk1-deficient cells which have lost the capacity to synthesize DNA as a result of progressive replication fork inactivation. These results suggest that Chk1 maintains the S-M checkpoint indirectly by preserving the viability of replication structures and that it is the continued presence of such structures, rather than the activation of Chk1 per se, which delays mitosis until DNA replication is complete.


Asunto(s)
Replicación del ADN , Mitosis/fisiología , Proteínas Quinasas/metabolismo , Estaurosporina/análogos & derivados , Animales , Antineoplásicos/metabolismo , Afidicolina/metabolismo , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Pollos , Marcación de Gen , Nocodazol/metabolismo , Conformación de Ácido Nucleico , Fosforilación , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estaurosporina/metabolismo
13.
Mol Cell Biol ; 24(20): 9006-18, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15456874

RESUMEN

Mouse embryo fibroblasts deficient for the c-Jun proto-oncogene (c-Jun-/- MEF) undergo p53-dependent premature senescence in conventional culture. This phenotype becomes evident only after several cell divisions, suggesting that senescence may result from exposure to unknown environmental factors. Here, we show that c-Jun-/- MEF can proliferate successfully in low oxygen (3% O2), indicating that premature senescence under conventional culture conditions is a consequence of hyperoxic stress. c-Jun-/- MEF exhibit higher basal levels of DNA damage compared to normal fibroblasts in high but not low oxygen, implying that senescence results from chronic accumulation of spontaneous DNA damage. This accumulation may be attributable, at least in part, to inefficient repair, since DNA damage induced by gamma ionizing radiation and H2O2 persists for longer in c-Jun-/- MEF than in wild-type MEF. Unexpectedly, p53 expression, phosphorylation, and transcriptional activity are largely unaffected by oxygen exposure, indicating that the accumulation of spontaneous DNA damage does not result in chronic activation of p53 as judged by conventional criteria. Finally, we find that c-Jun associates with nuclear foci containing gammaH2AX and ATM following irradiation, suggesting a potential role for c-Jun in DNA repair processes per se.


Asunto(s)
Ciclo Celular/fisiología , Senescencia Celular , Daño del ADN , Fibroblastos/fisiología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Técnicas de Cultivo de Célula/métodos , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Reparación del ADN , Proteínas de Unión al ADN , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Genes Reporteros , Histonas/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Noqueados , Oxidantes/farmacología , Estrés Oxidativo , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-jun/genética , Radiación Ionizante , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor
14.
Mol Cell Biol ; 24(4): 1540-59, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749371

RESUMEN

Invasion is generally perceived to be a late event during the progression of human cancer, but to date there are no consistent reports of alterations specifically associated with malignant conversion. We provide evidence that the v-Fos oncogene induces changes in gene expression that render noninvasive normal human diploid fibroblasts highly invasive, without inducing changes in growth factor requirements or anchorage dependence for proliferation. Furthermore, v-Fos-stimulated invasion is independent of the pRb/p16(INK4a) and p53 tumor suppressor pathways and telomerase. We have performed microarray analysis using Affymetrix GeneChips, and the gene expression profile of v-Fos transformed cells supports its role in the regulation of invasion, independent from proliferation. We also demonstrate that invasion, but not proliferation, is dependent on the activity of the up-regulated epidermal growth factor receptor. Taken together, these results indicate that AP-1-directed invasion could precede deregulated proliferation during tumorigenesis and that sustained activation of AP-1 could be the epigenetic event required for conversion of a benign tumor into a malignant one, thereby explaining why many malignant human tumors present without an obvious premalignant hyperproliferative dysplastic lesion.


Asunto(s)
Transformación Celular Neoplásica/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Invasividad Neoplásica/patología , Proteínas Oncogénicas v-fos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , División Celular , Transformación Celular Neoplásica/genética , Daño del ADN , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Humanos , Cariotipificación , Ratones , Invasividad Neoplásica/genética , Proteínas Oncogénicas v-fos/genética , Transducción de Señal , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Cicatrización de Heridas
15.
Oncogene ; 23(13): 2357-66, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-14691447

RESUMEN

We have used chicken cDNA microarrays to investigate gene-expression changes induced during transformation of chick embryo fibroblasts (CEF) by the viral Jun oncoprotein encoded by ASV17. This analysis reveals that v-Jun induces increases and decreases of varying magnitude in the expression of genes involved in diverse cellular functions, most of which have not been detected in previous screens for putative v-Jun targets. In all, 27 individual genes were identified, whose expression is increased threefold or more in v-Jun-transformed cells, including genes involved in energy generation, protein synthesis, and gene transcription. Interestingly, this group includes the hypoxia-inducible factor-1 alpha (Hif-1alpha) transcription factor and the glycolytic enzyme enolase, suggesting that adaptation to hypoxia could play a role in tumorigenesis by v-Jun. We also identified 32 genes whose expression is decreased threefold or more, including chaperones, components of the cytoskeleton, and, unexpectedly, DNA replication factors. The gene whose expression is upregulated most dramatically (approximately 100-fold) encodes Autotaxin (ATX), a secreted tumor motility-promoting factor with lysophospholipase D activity. Strikingly, v-Jun-transformed CEF secrete catalytically active ATX and chemotactic activity, which can be detected in conditioned medium. ATX is not detectably expressed in normal CEF or CEF transformed by the v-Src or v-Myc oncoproteins, indicating that induction of this putative autocrine/paracrine factor is a specific consequence of cell transformation by v-Jun. ATX has been implicated in both angiogenesis and invasion, and could therefore play an important role in tumorigenesis by v-Jun in vivo.


Asunto(s)
Glucosa-6-Fosfato Isomerasa/metabolismo , Glicoproteínas/metabolismo , Complejos Multienzimáticos , Proteína Oncogénica p65(gag-jun)/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Embrión de Pollo , Regulación hacia Abajo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfodiesterasa I , Pirofosfatasas , Regulación hacia Arriba
16.
Cell ; 114(6): 655-6, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-14505563

RESUMEN

Recent evidence reveals an unexpected role for the linker histone H1.2 in DNA damage-induced apoptosis. DNA double strand breaks induce translocation of nuclear H1.2 to the cytoplasm, where it promotes release of cytochrome c from mitochondria by activating the Bcl-2 family protein, Bak.


Asunto(s)
Apoptosis/genética , Núcleo Celular/genética , Daño del ADN/genética , Células Eucariotas/metabolismo , Histonas/genética , Transporte Activo de Núcleo Celular/genética , Animales , Grupo Citocromo c/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2
17.
Biochim Biophys Acta ; 1628(3): 147-55, 2003 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-12932827

RESUMEN

A chimeric protein consisting of the estrogen receptor alpha ligand binding domain (ER-alpha LBD) fused to the DNA binding domain (DBD) of the v-Jun oncoprotein, deltavJ-hER, was previously shown to elicit estradiol-dependent transcriptional activation and cell transformation. Remarkably, in the unliganded state deltavJ-hER is not inert, but rather inhibits cell proliferation. To understand the molecular basis for these opposite effects on cell growth, we investigated the effect of estradiol on deltavJ-hER function. We find that deltavJ-hER is localised to the cell nucleus and capable of binding TPA-response element (TRE) DNA recognition sites in the presence and absence of estradiol, indicating that these properties are unlikely to be the targets of hormonal regulation. In contrast, a mutant derivative of deltavJ-hER in which amino acid substitutions selectively disrupt activation function 2 (AF-2) function is unable to elicit estradiol-dependent transcription or cell transformation, even though DNA binding is not impaired. Taken together, these observations establish that estrogen receptor AF-2 activity is essential for cell transformation by deltavJ-hER.


Asunto(s)
ADN/metabolismo , Proteína Oncogénica p65(gag-jun)/metabolismo , Proteínas/metabolismo , Receptores de Estrógenos/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Estradiol/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Coactivadores de Receptor Nuclear
19.
Oncogene ; 22(6): 819-25, 2003 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-12584560

RESUMEN

MSH2 and MLH1 have a central role in correcting mismatches in DNA occurring during DNA replication and have been implicated in the engagement of apoptosis induced by a number of cytotoxic anticancer agents. The function of MLH1 is not clearly defined, although it is required for mismatch repair (MMR) and engagement of apoptosis after certain types of DNA damage. In order to identify other partners of MLH1 that may be involved in signalling MMR or apoptosis, we used human MLH1 in yeast two-hybrid screens of normal human breast and ovarian cDNA libraries. As well as known partners of MLH1 such as PMS1, MLH3 and MBD4, we identified the carboxy terminus of the human c-MYC proto-oncogene as an interacting sequence. We demonstrate, both in vitro by yeast two-hybrid and GST-fusion pull-down experiments, as well as in vivo by coimmunoprecipitation from human tumour cell extracts, that MLH1 interacts with the c-MYC protein. We further demonstrate that the heterodimeric partner of c-MYC, MAX, interacts with a different MMR protein, MSH2, both in vitro and in vivo. Using an inducible c-MYC-ER fusion gene, we show that elevated c-MYC expression leads to an increased HGPRT mutation rate of Rat1 cells and an increase in the number of frameshift mutants at the HGPRT locus. The effect on HGPRT mutation rate is small (2-3-fold), but is consistent with deregulated c-MYC expression partially inhibiting MMR activity.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales , Animales , Disparidad de Par Base , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas Portadoras , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS , Mutagénesis/fisiología , Proteínas Nucleares , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Ratas , Células Tumorales Cultivadas , Técnicas del Sistema de Dos Híbridos
20.
EMBO J ; 22(3): 713-23, 2003 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-12554671

RESUMEN

The conserved protein kinase Chk1 is believed to play an important role in checkpoint responses to aberrant DNA structures; however, genetic analysis of Chk1 functions in metazoans is complicated by lethality of Chk1-deficient embryonic cells. We have used gene targeting to eliminate Chk1 function in somatic DT40 B-lymphoma cells. We find that Chk1-deficient DT40 cells are viable, but fail to arrest in G(2)/M in response to and are hypersensitive to killing by ionizing radiation. Chk1-deficient cells also fail to maintain viable replication forks or suppress futile origin firing when DNA polymerase is inhibited, leading to incomplete genome duplication and diminished cell survival after release from replication arrest. In contrast to embryonic cells, however, Chk1 is not required to delay mitosis when DNA synthesis is inhibited. Thus, Chk1 is dispensable for normal cell division in somatic DT40 cells but is essential for DNA damage-induced G(2)/M arrest and a subset of replication checkpoint responses. Furthermore, Chk1-dependent processes promote tumour cell survival after perturbations of DNA structure or metabolism.


Asunto(s)
División Celular/fisiología , Supervivencia Celular , Replicación del ADN/fisiología , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Afidicolina/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Daño del ADN , Inhibidores Enzimáticos/farmacología , Marcación de Gen , Genes cdc , Humanos , Linfoma de Células B/metabolismo , Datos de Secuencia Molecular , Proteínas Quinasas/genética , Radiación Ionizante , Alineación de Secuencia , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...