Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 4(3): 251-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24558581

RESUMEN

Omnivory is extremely common in animals, yet theory predicts that when given a choice of resources specialization should be favored over being generalist. The evolution of a feeding phenotype involves complex interactions with many factors other than resource choice alone, including environmental heterogeneity, resource quality, availability, and interactions with other organisms. We applied an evolutionary simulation model to examine how ecological conditions shape evolution of feeding phenotypes (e.g., omnivory), by varying the quality and availability (absolute and relative) of plant and animal (prey) resources. Resulting feeding phenotypes were defined by the relative contribution of plants and prey to diets of individuals. We characterized organisms using seven traits that were allowed to evolve freely in different simulated environments, and we asked which traits are important for different feeding phenotypes to evolve among interacting organisms. Carnivores, herbivores, and omnivores all coexisted without any requirement in the model for a synergistic effect of eating plant and animal prey. Omnivores were most prevalent when ratio of plants and animal prey was low, and to a lesser degree, when habitat productivity was high. A key result of the model is that omnivores evolved through many different combinations of trait values and environmental contexts. Specific combinations of traits tended to form emergent trait complexes, and under certain environmental conditions, are expressed as omnivorous feeding phenotypes. The results indicate that relative availabilities of plants and prey (over the quality of resources) determine an individual's feeding class and that feeding phenotypes are often the product of convergent evolution of emergent trait complexes under specific environmental conditions. Foraging outcomes appear to be consequences of degree and type of phenotypic specialization for plant and animal prey, navigation and exploitation of the habitat, reproduction, and interactions with other individuals in a heterogeneous environment. Omnivory should not be treated as a fixed strategy, but instead a pattern of phenotypic expression, emerging from diverse genetic sources and coevolving across a range of ecological contexts.

2.
Exp Appl Acarol ; 53(1): 17-27, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20628894

RESUMEN

Development time, reproduction, survival and sex ratio were determined for the omnivorous mite Amblyseius swirskii at nine constant temperatures (13, 15, 18, 20, 25, 30, 32, 34 and 36°C) on pepper leaf disks with cattail, Typha latifolia, pollen for food. These data were used to derive life table parameters at these constant temperatures. No development was observed at 13°C. The lower development threshold, based on the fit to the linear portion of the development curve, was 11.3°C. The upper development threshold was 37.4 ± 1.12°C, and the optimum temperature was calculated to be 31.5°C. Average lifetime fecundity ranged from a low of 1.3 ± 0.24 eggs/female at 15°C to a high of 16.1 ± 0.34 eggs/female at 25°C, and r (m) was greatest at 32°C. Non-linear regression of the relationship between temperature and r (m) produced an estimate of 15.49 ± 0.905°C for the lower threshold for population growth and 36.99 ± 0.816°C for the upper threshold for population growth, and an optimum temperature of 30.1°C. These values suggest that A. swiskii populations should grow quickly in response to food availability (pollen or prey) between 20 and 32°C, but that, especially below 20°C, population growth could be slow and impacts on prey populations should be monitored carefully.


Asunto(s)
Ácaros/crecimiento & desarrollo , Temperatura , Animales , Femenino , Tablas de Vida , Longevidad , Masculino , Oviparidad , Dinámica Poblacional , Razón de Masculinidad
3.
J Anim Ecol ; 79(6): 1164-71, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20646124

RESUMEN

1. Most trophic interaction theory assumes that all predators are an abstract form of risk to which prey respond in a quantitatively similar manner. This conceptualization can be problematic because recent empirical work demonstrates that variation in the responses of prey to different predators can play a key role in structuring communities and regulating ecosystem function. 2. Predator identity - the species specific response of prey to a predator - has been proposed as an ultimate mechanism driving the relative contribution of indirect effects in food webs; however few studies have explicitly tested this hypothesis. 3. This study explores the impact of predator identity on direct consumptive (CE) and non-consumptive effects (NCEs), and on the relative contribution of indirect, density and trait-mediated effects in trophic cascades within host-parasitoid communities. 4. We systematically compared the individual, host-parasitoid-plant interactions of two actively foraging parasitoid species with disparate foraging styles, one aggressive and one furtive, a common aphid host and plant. Our results demonstrate that the degree of risk aversion by prey to each particular predator species (i.e. predator identity) is a key factor driving the nature and strength of direct and indirect transmission pathways. 5. Both parasitoid species, in general, had a negative impact on plants. The magnitude of the aphid anti-predator dispersal response was positively correlated with plant infestation and plant damage. The qualitative effect of predator-induced infestation of new plants superseded the quantitative effects of predator-mediated reductions in aphid numbers. 6. The greatest indirect impact on plants was generated by the aggressively foraging parasitoid, and the strength of the aphids anti-predator response (a NCE) antagonistically traded-off with CEs due to an increased investment in attempting to capture risk-sensitized prey. In contrast, the furtive parasitoid did not elicit a strong anti-predator response, had little indirect impact on plants, but generated very high CEs due to the advantage of ovipositing into a sedentary prey population. 7. Our data suggest the responses of prey to different predatory cues may be an important mechanism driving the relative contribution of transmission pathways in trophic cascades. We conclude that predator identity is a key factor influencing the nature and strength of food web interactions.


Asunto(s)
Áfidos/parasitología , Conducta Predatoria/fisiología , Avispas/fisiología , Animales , Áfidos/fisiología , Reacción de Fuga , Interacciones Huésped-Parásitos , Plantas/parasitología , Especificidad de la Especie , Factores de Tiempo
4.
Ecol Appl ; 20(1): 242-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20349844

RESUMEN

It has been hypothesized that the success of a biological control introduction is, in part, dependent on the ability of the control agent to become established in its new environment or to its new population of hosts through local adaptation. Despite this, few studies have investigated the influence of the recent coevolutionary history of pest species and natural enemies on the efficacy of biological control agents, especially for agents that are mass-reared for release in agriculture. We investigate the evolutionary potential of a biological control agent Aphidius ervi to adapt to a key pest species, the foxglove aphid Aulacorthum solani, through components essential to the evolution of parasitoid virulence. We explored (1) the influence of genetic variation from natural source populations on the ability to parasitize natal and non-natal host species; (2) the heritability of key traits related to parasitoid fitness; and (3) the efficacy of parasitoid host-selection lines in a greenhouse system. Source populations maintained genetic variation in the ability to utilize natal and non-natal host species; however, only some of the traits sampled suggested local adaptation of parasitoid populations. The ability to parasitize a host was found to be genetically determined and strongly heritable, irrespective of host species. The greenhouse study demonstrated the potential of parasitoid selection lines to substantially increase performance of parasitoids for target pest species. This research provides insight into novel techniques that can be used to increase the quality of biological control agents through the development of lines of natural enemies adapted to particular pest species.


Asunto(s)
Áfidos/parasitología , Control Biológico de Vectores/métodos , Avispas/fisiología , Adaptación Fisiológica/genética , Animales , Interacciones Huésped-Parásitos , Avispas/genética
5.
Evolution ; 62(3): 689-99, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18182071

RESUMEN

The diversity of parasitic insects remains one of the most conspicuous patterns on the planet. The principal factor thought to contribute to differentiation of populations and ultimately speciation is the intimate relationship parasites share with hosts and the potential for disruptive selection associated with using different host species. Traits that generate this diversity have been an intensely debated topic of central importance to the evolution of specialization and maintenance of ecological diversity. A fundamental hypothesis surrounding the evolution of specialization is that no single genotype is uniformly superior in all environments. This "trade-off" hypothesis suggests that negative fitness correlations can lead to specialization on different hosts as alternative stable strategies. In this study we demonstrate a trade-off in the ability of the parasitoid, Aphidius ervi, to maintain a high level of fitness on an ancestral and novel host, which suggests a genetic basis for host utilization that may limit host-range expansion in parasitoids. Furthermore, behavioral evidence suggests mechanisms that could promote specialization through induced host fidelity. Results are discussed in the context of host-affiliated ecological selection as a potential source driving diversification in parasitoid communities and the influence of host species heterogeneity on population differentiation and local adaptation.


Asunto(s)
Adaptación Biológica/fisiología , Áfidos/fisiología , Evolución Biológica , Ecosistema , Hemípteros/parasitología , Interacciones Huésped-Parásitos/fisiología , Animales , Áfidos/patogenicidad , Interacciones Huésped-Parásitos/genética , Ontario , Virulencia
6.
Proc Biol Sci ; 273(1603): 2893-9, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17015365

RESUMEN

Flexibility in adult body size allows generalist parasitoids to use many host species at a cost of producing a range of adult sizes. Consequently, host selection behaviour must also maintain a level of flexibility as adult size is related to capture efficiency. In the present study, we investigated covariance of two plastic traits--size at pupation and host size selection behaviour-using Aphidius ervi reared on either Acyrthosiphon pisum or Aulacorthum solani, generating females of disparate sizes. Natal host was shown to change the ranking of perceived host quality with relation to host size. Parasitoids preferentially attacked hosts that corresponded to the size of the second instar of their natal host species. This resulted in optimal host selection behaviour when parasitoids were exposed to the same host species from which they emerged. Parasitoid size was positively correlated with host size preference, indicating that females use relative measurements when selecting suitable hosts. These coadapted gene complexes allow generalist parasitoids to effectively use multiple host species over several generations. However, the fixed nature of the behavioural response, within a parasitoid's lifetime, suggests that these traits may have evolved in a patchy host species environment.


Asunto(s)
Áfidos/parasitología , Conducta Animal , Himenópteros/fisiología , Fenotipo , Adaptación Fisiológica , Animales , Áfidos/anatomía & histología , Tamaño Corporal , Femenino , Himenópteros/anatomía & histología , Himenópteros/crecimiento & desarrollo , Larva/anatomía & histología , Larva/fisiología
7.
Naturwissenschaften ; 92(9): 431-4, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16086188

RESUMEN

Evolutionary and ecological transitions from carnivorous to omnivorous feeding may be constrained by the ability of the animal to cope with disparate types of foods, even if preadaptations for such behaviour exist. The omnivorous true bug, Dicyphus hesperus (Hemiptera: Miridae) requires both animals (small, soft-bodied insects) and plants in its diet and obtains the majority of its dietary and metabolic water from plant feeding. Serrations on the lateral margins of the mandibular stylets wear with age, and this wear is exacerbated when the insects feed on plants compared to those provided free water and no plants. D. hesperus that feed on plants attack fewer prey but consumed similar amounts of prey tissue compared to individuals that were provided free water. Although others have shown mandible wear for plant-chewing animals we show for the first time that plant feeding can impose similar wear on plant-piercing animals as well.


Asunto(s)
Alimentación Animal , Ingestión de Alimentos/fisiología , Heterópteros/fisiología , Mandíbula/fisiología , Plantas/parasitología , Animales , Femenino , Mandíbula/anatomía & histología , Oviposición , Plantas/clasificación , Nicotiana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA