Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400074

RESUMEN

The second symposium of the Belgian Society for Viruses of Microbes (BSVoM) took place on 8 September 2023 at the University of Liège with 141 participants from 10 countries. The meeting program covered three thematic sessions opened by international keynote speakers: two sessions were devoted to "Fundamental research in phage ecology and biology" and the third one to the "Present and future applications of phages". During this one day symposium, four invited keynote lectures, nine selected talks and eight student pitches were given along with thirty presented posters. The president of the Belgian Society for Viruses of Microbes, Prof. Yves Briers, took advantage of this symposium to launch the Phage Valley concept that will put the spotlight on the exceptionally high density of researchers investigating viruses of microbes as well as the successful triple helix approach between academia, industry and government in Belgium.


Asunto(s)
Bacteriófagos , Humanos , Bélgica , Ambiente , Ecología , Estudiantes
2.
Viruses ; 15(5)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37243298

RESUMEN

The Belgian Society for Viruses of Microbes (BSVoM) was founded on 9 June 2022 to capture and enhance the collaborative spirit among the expanding community of microbial virus researchers in Belgium. The sixteen founders are affiliated to fourteen different research entities across academia, industry and government. Its inaugural symposium was held on 23 September 2022 in the Thermotechnical Institute at KU Leuven. The meeting program covered three thematic sessions launched by international keynote speakers: (1) virus-host interactions, (2) viral ecology, evolution and diversity and (3) present and future applications. During the one-day symposium, four invited keynote lectures, ten selected talks and eight student pitches were given along with 41 presented posters. The meeting hosted 155 participants from twelve countries.


Asunto(s)
Interacciones Microbiota-Huesped , Virus , Humanos , Bélgica
3.
Arch Virol ; 168(2): 74, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683075

RESUMEN

This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established. In addition, one order, 22 families, 30 subfamilies, 321 genera, and 862 species were newly created, promoted, or moved.


Asunto(s)
Bacteriófagos , Caudovirales , Siphoviridae , Virus , Humanos , Virus/genética , Myoviridae
4.
Front Microbiol ; 13: 1034440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406448

RESUMEN

Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.

5.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34417873

RESUMEN

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Asunto(s)
Virus de Archaea/clasificación , Bacteriófagos/clasificación , Sociedades Científicas/organización & administración , Archaea/virología , Bacterias/virología
6.
Microorganisms ; 9(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205474

RESUMEN

Tectiviruses infecting the Bacillus cereus group represent part of the bacterial "plasmid repertoire" as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze the complete genome sequences of phages Sato and Sole. The linear dsDNA genome of Sato spans 14,852 bp with 32 coding DNA sequences (CDSs), whereas the one of Sole has 14,444 bp comprising 30 CDSs. Both phage genomes contain inverted terminal repeats and no tRNAs. Genomic comparisons and phylogenetic analyses placed these two phages within the genus Betatectivirus in the family Tectiviridae. Additional comparative genomic analyses indicated that the "gene regulation-genome replication" module of phages Sato and Sole is more diverse than previously observed among other fully sequenced betatectiviruses, displaying very low sequence similarities and containing some ORFans. Interestingly, the ssDNA binding protein encoded in this genomic module in phages Sato and Sole has very little amino acid similarity with those of reference betatectiviruses. Phylogenetic analyses showed that both Sato and Sole represent novel tectivirus species, thus we propose to include them as two novel species in the genus Betatectivirus.

7.
Curr Opin Microbiol ; 60: 24-33, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33578058

RESUMEN

Secondary cell wall polymers fulfil diverse and important functions within the cell wall of Gram-positive bacteria. Here, we will provide a brief overview of the principles of teichoic acid and complex secondary cell wall polysaccharide biosynthesis pathways in Firmicutes and summarize the recently revised mechanism for the decoration of teichoic acids with d-alanines. Many cell wall polymers are decorated with glycosyl groups, either intracellularly or extracellularly. The main focus of this review will be on the extracellular glycosylation mechanism and recent advances that have been made in the identification of enzymes involved in this process. Based on the proteins involved, we propose to rename the system to multi-component transmembrane glycosylation system in place of three-component glycosylation system.


Asunto(s)
Proteínas Bacterianas , Polímeros , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Glicosilación , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Polímeros/metabolismo , Ácidos Teicoicos/metabolismo
8.
J Biotechnol ; 327: 28-35, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33387595

RESUMEN

The Bacillus subtilis group comprises species known for their ability to produce a wide variety of antimicrobial peptides. This work focuses on bacilysin, a broad-spectrum active dipeptide, and its prevalence in the B. subtilis group. In silico genome analysis of strains from Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus licheniformis, Bacillus pumilus and B. subtilis subspecies inaquosorum, spizizenii and subtilis revealed that the bacilysin gene cluster is present in all species except for B. licheniformis. This observation was corroborated by PCR detection of the bacilysin genetic determinants on a collection of 168 food and environmental strains from the B. subtilis group. Phylogenetic analyses also demonstrated that the bacilysin gene cluster sequence showed more than 80 % identity within each species of the B. subtilis group. An in vitro screening of the strain collection was performed against foodborne pathogens. Twenty-three strains were selected for their ability of their Cell-Free Supernatant to inhibit foodborne pathogens. After an ammonium sulphate precipitation of their supernatant, eight strains, all belonging to B. velezensis, exhibited antimicrobial activity against Gram-negative pathogens. Using Ultra High Performance Liquid Chromatography - Mass Spectrometry, the presence of bacilysin was confirmed in these eight precipitates. These findings provide evidence that bacilysin is a major player in the antagonistic activity of B. velezensis against Gram-negative foodborne pathogens.


Asunto(s)
Bacillus subtilis , Dipéptidos , Bacterias Gramnegativas , Bacillus , Bacillus subtilis/genética , Enfermedades Transmitidas por los Alimentos , Filogenia , Prevalencia
9.
Front Microbiol ; 12: 789929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992589

RESUMEN

Bacillus cytotoxicus is the thermotolerant representative of the Bacillus cereus group. This group, also known as B. cereus sensu lato, comprises both beneficial and pathogenic members and includes psychrotolerant and thermotolerant species. Bacillus cytotoxicus was originally recovered from a fatal outbreak in France in 1998. This species forms a remote cluster from the B. cereus group members and reliably contains the cytk-1 gene, coding for a cytotoxic variant of cytotoxin K. Although this species was originally thought to be homogenous, intra-species diversity has been recently described with four clades, six random amplified polymorphic DNA (RAPD) patterns, and 11 plasmids profiles. This study aimed to get new insights into the genomic diversity of B. cytotoxicus and to decipher the underlying chromosomal and plasmidial variations among six representative isolates through whole genome sequencing (WGS). Among the six sequenced strains, four fitted the previously described genomic clades A and D, while the remaining two constituted new distinct branches. As for the plasmid content of these strains, three large plasmids were putatively conjugative and three small ones potentially mobilizable, harboring coding genes for putative leaderless bacteriocins. Mobile genetic elements, such as prophages, Insertion Sequences (IS), and Bacillus cereus repeats (bcr) greatly contributed to the B. cytotoxicus diversity. As for IS elements and bcr, IS3 and bcr1 were the most abundant elements and, along with the group II intron B.c.I8, were found in all analyzed B. cytotoxicus strains. When compared to other B. cytotoxicus strains, the type-strain NVH 391-98 displayed a relatively low number of IS. Our results shed new light on the contribution of mobile genetic elements to the genome plasticity of B. cytotoxicus and their potential role in horizontal gene transfer.

10.
Viruses ; 12(9)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967292

RESUMEN

Endolysins are phage-encoded enzymes implicated in the breaching of the bacterial cell wall at the end of the viral cycle. This study focuses on the endolysins of Deep-Blue (PlyB221) and Deep-Purple (PlyP32), two phages preying on the Bacillus cereus group. Both enzymes exhibit a typical modular organization with an enzymatically active domain (EAD) located in the N-terminal and a cell wall binding domain (CBD) in the C-terminal part of the protein. In silico analysis indicated that the EAD domains of PlyB221 and PlyP32 are endowed with peptidase and muramidase activities, respectively, whereas in both proteins SH3 domains are involved in the CBD. To evaluate their antimicrobial properties and binding specificity, both endolysins were expressed and purified. PlyB221 and PlyP32 efficiently recognized and lysed all the tested strains from the B. cereus group. Biochemical characterization showed that PlyB221 activity was stable under a wide range of pHs (5-9), NaCl concentrations (up to 200 mM), and temperature treatments (up to 50 °C). Although PlyP32 activity was less stable than that of PlyB221, the endolysin displayed high activity at pH 6-7, NaCl concentration up to 100 mM and the temperature treatment up to 45 °C. Overall, PlyB221 and PlyP32 display suitable characteristics for the development of biocontrol and detection tools.


Asunto(s)
Fagos de Bacillus/enzimología , Fagos de Bacillus/genética , Bacillus cereus/virología , Endopeptidasas/genética , Antibacterianos/metabolismo , Pared Celular/metabolismo , Enfermedades Transmitidas por los Alimentos/microbiología , Especificidad del Huésped , Peptidoglicano/metabolismo
11.
12.
Syst Biol ; 69(1): 110-123, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127947

RESUMEN

Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.


Asunto(s)
Caudovirales/clasificación , Filogenia , Caudovirales/genética , Clasificación , Genoma Viral/genética
13.
Viruses ; 11(4)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987360

RESUMEN

Begomoviruses are one of the major groups of plant viruses with an important economic impact on crop production in tropical and subtropical regions. The global spread of its polyphagous vector, the whitefly Bemisia tabaci, has contributed to the emergence and diversification of species within this genus. In this study, we found a putative novel begomovirus infecting tomato plants in Venezuela without a cognate DNA-B component. This begomovirus was genetically characterized and compared with related species. Furthermore, its infectivity was demonstrated by agroinoculation of infectious clones in tomato (Solanum lycopersicum) and Nicotiana benthamiana plants. The name Tomato twisted leaf virus (ToTLV) is proposed. ToTLV showed the typical genome organization of the DNA-A component of New World bipartite begomoviruses. However, the single DNA component of ToTLV was able to develop systemic infection in tomato and N. benthamiana plants, suggesting a monopartite nature of its genome. Interestingly, an additional open reading frame ORF was observed in ToTLV encompassing the intergenic region and the coat protein gene, which is not present in other closely related begomoviruses. A putative transcript from this region was amplified by strand-specific reverse transcription-PCR. Along with recent studies, our results showed that the diversity of monopartite begomoviruses from the New World is greater than previously thought.


Asunto(s)
Begomovirus/clasificación , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Begomovirus/genética , Begomovirus/patogenicidad , ADN Intergénico , ADN Viral , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/virología , Análisis de Secuencia de ADN , Nicotiana/virología , Venezuela
14.
Front Microbiol ; 10: 302, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873135

RESUMEN

Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.

15.
FEMS Microbiol Rev ; 42(6): 829-856, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30203090

RESUMEN

Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.


Asunto(s)
Bacillus thuringiensis/genética , Secuencias Repetitivas Esparcidas/genética , Plásmidos/genética , Animales , Bacillus thuringiensis/patogenicidad , Variación Genética , Insectos/microbiología , Larva/microbiología , Especificidad de la Especie
16.
Nano Lett ; 18(9): 5821-5826, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30169045

RESUMEN

Understanding the basic mechanisms of bacterial sexuality is an important topic in current microbiology and biotechnology. While classical methods used to study gene transfer provide information on whole cell populations, nanotechnologies offer new opportunities for analyzing the behavior of individual mating partners. We introduce an innovative atomic force microscopy (AFM) platform to study and mechanically control DNA transfer between single bacteria, focusing on the large conjugative pXO16 plasmid of the Gram-positive bacterium Bacillus thuringiensis. We demonstrate that the adhesion forces between single donor and recipient cells are very strong (∼2 nN). Using a mutant plasmid, we find that these high forces are mediated by a pXO16 aggregation locus that contains two large surface protein genes. Notably, we also show that AFM can be used to mechanically induce plasmid transfer between single partners, revealing that transfer is very fast (<15 min) and triggers major cell surface changes in transconjugant cells. We anticipate that the single-cell technology developed here will enable researchers to mechanically control gene transfer among a wide range of Gram-positive and Gram-negative bacterial species and to understand the molecular forces involved. Also, the method could be useful in nanomedicine for the design of antiadhesion compounds capable of preventing intimate cell-cell contacts, therefore providing a means to control the resistance and virulence of bacterial pathogens.

17.
Arch Virol ; 163(9): 2555-2559, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29752557

RESUMEN

Bacteriophage Deep-Purple, isolated from an agricultural soil in Belgium, lyses the emetic Bacillus weihenstephanensis strain LH002 and exhibits a lytic activity against 55% of emetic Bacillus cereus and B. weihenstephanensis strains. Deep-Purple is able to complete its lytic cycle within 45 min and is stable to a large range of pHs and temperatures below 60 °C. It possesses an icosahedral head of about 63 nm in diameter and a non-contractile tail of approximately 165 nm in length. The genome of this newly classifiable Siphoviridae family member is 36,278 bp long, with a G+C content of 38.36% and 40 putative CDSs. Most CDSs do not display similarity with other B. cereus group phages supporting the idea that Deep-Purple belongs to a new and currently uncharacterised Siphoviridae subfamily.


Asunto(s)
Fagos de Bacillus/genética , Fagos de Bacillus/aislamiento & purificación , Bacillus cereus/virología , Genoma Viral , Siphoviridae/genética , Siphoviridae/aislamiento & purificación , Fagos de Bacillus/clasificación , Composición de Base , Bélgica , Filogenia , Siphoviridae/clasificación , Microbiología del Suelo , Secuenciación Completa del Genoma
18.
Front Microbiol ; 9: 143, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487574

RESUMEN

The world potato is facing major economic losses due to disease pressure and environmental concerns regarding pesticides use. This work aims at addressing these two issues by isolating indigenous bacteria that can be integrated into pest management strategies. More than 2,800 strains of Bacillus-like and Pseudomonas-like were isolated from several soils and substrates associated with potato agro-systems in Belgium. Screenings for antagonistic activities against the potato pathogens Alternaria solani, Fusarium solani (BCCM-MUCL 5492), Pectobacterium carotovorum (ATCC 15713), Phytophthora infestans (CRA-W10022) and Rhizoctonia solani (BCCM-MUCL 51929) were performed, allowing the selection of 52 Bacillus spp. and eight Pseudomonas spp. displaying growth inhibition of at least 50% under in vitro conditions, particularly against P. infestans. All 60 bacterial isolates were identified based on 16S rRNA gene sequencing and further characterized for the production of potential bio-active secondary metabolites. The antagonistic activities displayed by the selected strains indicated that versatile metabolites can be produced by the strains. For instance, the detection of genes involved bacilysin biosynthesis was correlated with the strong antagonism of Bacillus pumilus strains toward P. infestans, whereas the production of both bio-surfactants and siderophores might explain the high antagonistic activities against late blight. Greenhouse assays with potato plants were performed with the most effective strains (seven Bacillus spp. and four Pseudomonas spp.) in order to evaluate their in vivo antagonistic effect against P. infestans. Based on these results, four strains (Bacillus amyloliquefaciens 17A-B3, Bacillus subtilis 30B-B6, Pseudomonas brenneri 43R-P1 and Pseudomonas protegens 44R-P8) were retained for further evaluation of their protection index against P. infestans in a pilot field trial. Interestingly, B. subtilis 30B-B6 was shown to significantly decrease late blight severity throughout the crop season. Overall, this study showed that antagonistic indigenous soil bacteria can offer an alternative to the indiscriminate use of pesticide in potato agro-systems.

19.
Environ Microbiol ; 20(4): 1550-1561, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488309

RESUMEN

The entomopathogenic Bacillus thuringiensis serovar israelensis displays peculiar conjugative transfer capabilities, accounted for by the large conjugative plasmid pXO16 (350 kb). The efficient and fast conjugative transfers are accompanied by a macroscopic aggregation of bacterial partners. Moreover, pXO16 has proven capable of effective mobilization and the retro-transfer of both mobilizable and 'non-mobilizable' plasmids. In this work, the aggregation phenomenon is shown to promote pXO16 transfer while not being mandatory for transfer. Transfer of pXO16 to B. thuringiensis recipient strains that do not display aggregation is observed as well, hence enlarging the previously defined host range. The use of variant calling analysis of transconjugants allowed for observation of up to 791 kb chromosomal regions mobilization. Previous analysis of pXO16 did not reveal any Type IV Secretion System (T4SS) homologs, which suggested the presence of an unusual conjugative system. A FtsK/SpOIIIE ATPase gene proved here to be necessary for conjugative transfer. Additionally, the analysis of natural restriction-modification systems in both conjugative partners gave credit to a ssDNA transfer mechanism. A 'transfer israelensis plasmid' (tip) region containing this ATPase gene was shown to code for other potential T4SS proteins, illustrating a conjugative system distantly related to the other known Gram-positive T4SSs.


Asunto(s)
Bacillus thuringiensis/genética , Conjugación Genética/genética , Plásmidos/genética , Sistemas de Secreción Tipo IV/genética , Adenosina Trifosfatasas/genética , ADN/genética
20.
World J Microbiol Biotechnol ; 34(2): 28, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29350293

RESUMEN

Genotypic and phenotypic characterization of Bacillus spp. from polluted freshwater has been poorly addressed. The objective of this research was to determine the diversity and enzymatic potentialities of Bacillus spp. strains isolated from the Almendares River. Bacilli strains from a polluted river were characterized by considering the production of extracellular enzymes using API ZYM. 14 strains were selected and identified using 16S rRNA, gyrB and aroE genes. Genotypic diversity of the Bacillus spp. strains was evaluated using pulsed field gel electrophoresis. Furthermore, the presence of genetic determinants of potential virulence toxins of the Bacillus cereus group and proteinaceous crystal inclusions of Bacillus thuringiensis was determined. 10 strains were identified as B. thuringiensis, two as Bacillus megaterium, one as Bacillus pumilus and one as Bacillus subtilis. Most strains produced proteases, amylases, phosphatases, esterases, aminopeptidases and glucanases, which reflect the abundance of biopolymeric matter in Almendares River. Comparison of the typing results revealed a spatio-temporal distribution among B. thuringiensis strains along the river. The results of the present study highlight the genotypic and phenotypic diversity of Bacillus spp. strains from a polluted river, which contributes to the knowledge of genetic diversity of Bacilli from tropical polluted freshwater ecosystems.


Asunto(s)
Bacillus/clasificación , Bacillus/enzimología , Bacillus/aislamiento & purificación , Biodiversidad , Ecosistema , Agua Dulce/microbiología , Microbiología del Agua , Bacillus/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/análisis , Cuba , Girasa de ADN/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado/métodos , Pruebas de Enzimas , Genes Bacterianos/genética , Genotipo , Filogenia , ARN Ribosómico 16S/genética , Ríos/microbiología , Especificidad de la Especie , Virulencia/genética , Contaminación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...