Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Science ; 330(6010): 1496-501, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20978282

RESUMEN

Quantitative scenarios are coming of age as a tool for evaluating the impact of future socioeconomic development pathways on biodiversity and ecosystem services. We analyze global terrestrial, freshwater, and marine biodiversity scenarios using a range of measures including extinctions, changes in species abundance, habitat loss, and distribution shifts, as well as comparing model projections to observations. Scenarios consistently indicate that biodiversity will continue to decline over the 21st century. However, the range of projected changes is much broader than most studies suggest, partly because there are major opportunities to intervene through better policies, but also because of large uncertainties in projections.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Organismos Acuáticos , Conservación de los Recursos Naturales , Extinción Biológica , Predicción , Modelos Biológicos , Plantas , Políticas , Dinámica Poblacional
3.
PLoS One ; 5(8): e12491, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20824163

RESUMEN

Hundreds of thousands of seabirds are killed each year as bycatch in longline fisheries. Seabirds are predominantly caught during line setting but bycatch is generally recorded during line hauling, many hours after birds are caught. Bird loss during this interval may lead to inaccurate bycatch information. In this 15 year study, seabird bycatch was recorded during both line setting and line hauling from four fishing regions: Indian Ocean, Southern Ocean, Coral Sea and central Pacific Ocean. Over 43,000 albatrosses, petrels and skuas representing over 25 species were counted during line setting of which almost 6,000 seabirds attempted to take the bait. Bait-taking interactions were placed into one of four categories. (i) The majority (57%) of bait-taking attempts were "unsuccessful" involving seabirds that did not take the bait nor get caught or hooked. (ii) One-third of attempts were "successful" with seabirds removing the bait while not getting caught. (iii) One-hundred and seventy-six seabirds (3% of attempts) were observed being "caught" during line setting, with three albatross species - Laysan (Phoebastria immutabilis), black-footed (P. nigripes) and black-browed (Thalassarche melanophrys)- dominating this category. However, of these, only 85 (48%) seabird carcasses were retrieved during line hauling. Most caught seabirds were hooked through the bill. (iv) The remainder of seabird-bait interactions (7%) was not clearly observed, but likely involved more "caught" seabirds. Bait taking attempts and percentage outcome (e.g. successful, caught) varied between seabird species and was not always related to species abundance around fishing vessels. Using only haul data to calculate seabird bycatch grossly underestimates actual bycatch levels, with the level of seabird bycatch from pelagic longline fishing possibly double what was previously thought.


Asunto(s)
Aves , Explotaciones Pesqueras , Animales , Biodiversidad , Aves/clasificación , Explotaciones Pesqueras/estadística & datos numéricos , Océanos y Mares , Reproducibilidad de los Resultados
4.
Conserv Biol ; 23(3): 608-16, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19245491

RESUMEN

Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long-lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of "compensatory mitigation" in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals. Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations--fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population-level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.


Asunto(s)
Aves , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/métodos , Explotaciones Pesqueras/normas , Especies Introducidas , Biología Marina , Tortugas , Animales , Conservación de los Recursos Naturales/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...