Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 15(3): 366-376, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36443531

RESUMEN

The existing catalyst/initiator systems and methodologies used for the synthesis of polymers can access only a few cyclic polymers composed entirely of a single monomer type, and the synthesis of such authentic cyclic polar vinyl polymers (acrylics) devoid of any foreign motifs remains a challenge. Here we report that a tethered B-P-B trifunctional, intramolecular frustrated Lewis pair catalyst enables the synthesis of an authentic cyclic acrylic polymer, cyclic poly(γ-methyl-α-methylene-γ-butyrolactone) (c-PMMBL), from the bio-based monomer MMBL. Detailed studies have revealed an initiation and propagation mechanism through pairwise monomer enchainment enabled by the cooperative and synergistic initiator/catalyst sites of the trifunctional catalyst. We propose that macrocyclic intermediates and transition states comprising two catalyst molecules are involved in the catalyst-regulated ring expansion and eventual cyclization, forming authentic c-PMMBL rings and concurrently regenerating the catalyst. The cyclic topology of the c-PMMBL polymers imparts an ~50 °C higher onset decomposition temperature and a much narrower degradation window compared with their linear counterparts of similar molecular weight and dispersity, while maintaining high chemical recyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA