Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Med ; 13(1): 135, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425903

RESUMEN

BACKGROUND: Genetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human brain. METHODS: RNA-seq data from 783 human brain samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples. RESULTS: In the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A, a brain-wide synchronized 5N to 5A transition occurs between 24 post-conceptual weeks (2nd trimester) and 6 years of age. In mice, the equivalent 5N to 5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories. CONCLUSIONS: Exon usage in SCN1A, SCN2A, SCN3A, and SCN8A changes dramatically during human brain development. These splice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica , Canales de Sodio Activados por Voltaje/genética , Empalme Alternativo , Animales , Biomarcadores , Corteza Cerebral , Susceptibilidad a Enfermedades , Exones , Humanos , Intrones , Ratones , Familia de Multigenes , Sistemas de Lectura Abierta , Polimorfismo Genético , Unión Proteica , Sitios de Carácter Cuantitativo , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
2.
Cell Rep ; 31(1): 107489, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268104

RESUMEN

Gene expression levels vary across developmental stage, cell type, and region in the brain. Genomic variants also contribute to the variation in expression, and some neuropsychiatric disorder loci may exert their effects through this mechanism. To investigate these relationships, we present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal development. Here we identify common variants that alter gene expression (expression quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or postnatal stages. Both "constant" and "temporal-predominant" eQTLs are enriched for loci associated with neuropsychiatric traits and disorders and colocalize with specific variants. Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, underscoring the importance of cataloging developmental trajectories in understanding cortical physiology and pathology.


Asunto(s)
Encéfalo/embriología , Biología Computacional/métodos , Corteza Prefrontal/metabolismo , Secuencia de Bases/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
3.
Science ; 362(6420)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30545852

RESUMEN

Whole-genome sequencing (WGS) has facilitated the first genome-wide evaluations of the contribution of de novo noncoding mutations to complex disorders. Using WGS, we identified 255,106 de novo mutations among sample genomes from members of 1902 quartet families in which one child, but not a sibling or their parents, was affected by autism spectrum disorder (ASD). In contrast to coding mutations, no noncoding functional annotation category, analyzed in isolation, was significantly associated with ASD. Casting noncoding variation in the context of a de novo risk score across multiple annotation categories, however, did demonstrate association with mutations localized to promoter regions. We found that the strongest driver of this promoter signal emanates from evolutionarily conserved transcription factor binding sites distal to the transcription start site. These data suggest that de novo mutations in promoter regions, characterized by evolutionary and functional signatures, contribute to ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Mutación , Regiones Promotoras Genéticas/genética , Sitios de Unión/genética , Secuencia Conservada , Análisis Mutacional de ADN , Sitios Genéticos , Variación Genética , Humanos , Linaje , Riesgo , Factores de Transcripción/metabolismo
4.
Nat Genet ; 50(5): 727-736, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700473

RESUMEN

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Mutación INDEL/genética , Polimorfismo de Nucleótido Simple/genética , Isoformas de Proteínas/genética , Femenino , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino
5.
BMC Genomics ; 7: 91, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16638145

RESUMEN

BACKGROUND: Comparative genomic hybridization can rapidly identify chromosomal regions that vary between organisms and tissues. This technique has been applied to detecting differences between normal and cancerous tissues in eukaryotes as well as genomic variability in microbial strains and species. The density of oligonucleotide probes available on current microarray platforms is particularly well-suited for comparisons of organisms with smaller genomes like bacteria and yeast where an entire genome can be assayed on a single microarray with high resolution. Available methods for analyzing these experiments typically confine analyses to data from pre-defined annotated genome features, such as entire genes. Many of these methods are ill suited for datasets with the number of measurements typical of high-density microarrays. RESULTS: We present an algorithm for analyzing microarray hybridization data to aid identification of regions that vary between an unsequenced genome and a sequenced reference genome. The program, CGHScan, uses an iterative random walk approach integrating multi-layered significance testing to detect these regions from comparative genomic hybridization data. The algorithm tolerates a high level of noise in measurements of individual probe intensities and is relatively insensitive to the choice of method for normalizing probe intensity values and identifying probes that differ between samples. When applied to comparative genomic hybridization data from a published experiment, CGHScan identified eight of nine known deletions in a Brucella ovis strain as compared to Brucella melitensis. The same result was obtained using two different normalization methods and two different scores to classify data for individual probes as representing conserved or variable genomic regions. The undetected region is a small (58 base pair) deletion that is below the resolution of CGHScan given the array design employed in the study. CONCLUSION: CGHScan is an effective tool for analyzing comparative genomic hybridization data from high-density microarrays. The algorithm is capable of accurately identifying known variable regions and is tolerant of high noise and varying methods of data preprocessing. Statistical analysis is used to define each variable region providing a robust and reliable method for rapid identification of genomic differences independent of annotated gene boundaries.


Asunto(s)
Algoritmos , Variación Genética , Genómica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Brucella melitensis/genética , Brucella ovis/genética , Deleción Cromosómica , Genoma Bacteriano
6.
Nucleic Acids Res ; 34(Database issue): D41-5, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381899

RESUMEN

ASAP is a comprehensive web-based system for community genome annotation and analysis. ASAP is being used for a large-scale effort to augment and curate annotations for genomes of enterobacterial pathogens and for additional genome sequences. New tools, such as the genome alignment program Mauve, have been incorporated into ASAP in order to improve display and analysis of related genomes. Recent improvements to the database and challenges for future development of the system are discussed. ASAP is available on the web at https://asap.ahabs.wisc.edu/asap/logon.php.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Bacteriano , Genómica , Internet , Alineación de Secuencia , Programas Informáticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA