Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148367

RESUMEN

Global change is exacerbating the prevalence of plant diseases caused by pathogenic fungi in forests worldwide. The conventional use of chemical fungicides, which is commonplace in agricultural settings, is not sanctioned for application in forest ecosystems, so novel control strategies are imperative. SIGS (Spray-Induced Gene Silencing) is a promising approach that can modulate the expression of target genes in eukaryotes in response to double-stranded RNA (dsRNA) present in the environment that triggers the RNA interference (RNAi) mechanism. SIGS exhibited notable success in reducing virulence when deployed against some crop fungal pathogens, such as Fusarium graminearum, Botrytis cinerea and Sclerotinia sclerotiorum, among others. However, there is a conspicuous dearth of studies evaluating the applicability of SIGS for managing forest pathogens. This research aimed to determine whether SIGS could be used to control Fusarium circinatum, a widely impactful forest pathogen that causes Pine Pitch Canker disease. Through a bacterial synthesis, we produced dsRNA molecules to target fungal essential genes involved to vesicle trafficking (Vps51, DCTN1, and SAC1), signal transduction (Pp2a, Sit4, Ppg1, and Tap42), and cell wall biogenesis (Chs1, Chs2, Chs3b, Gls1) metabolic pathways. We confirmed that F. circinatum is able to uptake externally applied dsRNA, triggering an inhibition of the pathogen's virulence. Furthermore, this study pioneers the demonstration that recurrent applications of dsRNAs in SIGS are more effective in protecting plants than single applications. Therefore, SIGS emerges as an effective and sustainable approach for managing plant pathogens, showcasing its efficacy in controlling a globally significant forest pathogen subject to quarantine measures.

2.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012499

RESUMEN

RNA-based strategies for plant disease management offer an attractive alternative to agrochemicals that negatively impact human and ecosystem health and lead to pathogen resistance. There has been recent interest in using mycoviruses for fungal disease control after it was discovered that some cause hypovirulence in fungal pathogens, which refers to a decline in the ability of a pathogen to cause disease. Cryphonectria parasitica, the causal agent of chestnut blight, has set an ideal model of management through the release of hypovirulent strains. However, mycovirus-based management of plant diseases is still restricted by limited approaches to search for viruses causing hypovirulence and the lack of protocols allowing effective and systemic virus infection in pathogens. RNA interference (RNAi), the eukaryotic cell system that recognizes RNA sequences and specifically degrades them, represents a promising. RNA-based disease management method. The natural occurrence of cross-kingdom RNAi provides a basis for host-induced gene silencing, while the ability of most pathogens to uptake exogenous small RNAs enables the use of spray-induced gene silencing techniques. This review describes the mechanisms behind and the potential of two RNA-based strategies, mycoviruses and RNAi, for plant disease management. Successful applications are discussed, as well as the research gaps and limitations that remain to be addressed.


Asunto(s)
Virus Fúngicos , Virus , Ecosistema , Virus Fúngicos/genética , Humanos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/terapia , Plantas/genética , ARN , Interferencia de ARN , Virus/genética
3.
Molecules ; 24(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813364

RESUMEN

Increasing demand for L-arginine by the food and pharmaceutical industries has sparked the search for sustainable ways of producing it. Microbial fermentation offers a suitable alternative; however, monitoring of arginine production and carbon source uptake during fermentation, requires simple and reliable quantitative methods compatible with the fermentation medium. Two methods for the simultaneous quantification of arginine and glucose or xylose are described here: high-performance anion-exchange chromatography coupled to integrated pulsed amperometric detection (HPAEC-IPAD) and reversed-phase ultra-high-performance liquid chromatography combined with charged aerosol detection (RP-UHPLC-CAD). Both were thoroughly validated in a lysogeny broth, a minimal medium, and a complex medium containing corn steep liquor. HPAEC-IPAD displayed an excellent specificity, accuracy, and precision for arginine, glucose, and xylose in minimal medium and lysogeny broth, whereas specificity and accuracy for arginine were somewhat lower in medium containing corn steep liquor. RP-UHPLC-CAD exhibited high accuracy and precision, and enabled successful monitoring of arginine and glucose or xylose in all media. The present study describes the first successful application of the above chromatographic methods for the determination and monitoring of L-arginine amounts during its fermentative production by a genetically modified Escherichia coli strain cultivated in various growth media.


Asunto(s)
Arginina/análisis , Escherichia coli/crecimiento & desarrollo , Monosacáridos/análisis , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Medios de Cultivo/química , Escherichia coli/metabolismo , Fermentación , Glucosa/análisis , Xilosa
4.
Microb Cell Fact ; 14: 29, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25890272

RESUMEN

BACKGROUND: Arginine is a high-value product, especially for the pharmaceutical industry. Growing demand for environmental-friendly and traceable products have stressed the need for microbial production of this amino acid. Therefore, the aim of this study was to improve arginine production in Escherichia coli by metabolic engineering and to establish a fermentation process in 1-L bioreactor scale to evaluate the different mutants. RESULTS: Firstly, argR (encoding an arginine responsive repressor protein), speC, speF (encoding ornithine decarboxylases) and adiA (encoding an arginine decarboxylase) were knocked out and the feedback-resistant argA214 or argA215 were introduced into the strain. Three glutamate independent mutants were assessed in bioreactors. Unlike the parent strain, which did not excrete any arginine during glucose fermentation, the constructs produced between 1.94 and 3.03 g/L arginine. Next, wild type argA was deleted and the gene copy number of argA214 was raised, resulting in a slight increase in arginine production (4.11 g/L) but causing most of the carbon flow to be redirected toward acetate. The V216A mutation in argP (transcriptional regulator of argO, which encodes for an arginine exporter) was identified as a potential candidate for improved arginine production. The combination of multicopy of argP216 or argO and argA214 led to nearly 2-fold and 3-fold increase in arginine production, respectively, and a reduction of acetate formation. CONCLUSIONS: In this study, E. coli was successfully engineered for enhanced arginine production. The ∆adiA, ∆speC, ∆speF, ∆argR, ∆argA mutant with high gene copy number of argA214 and argO produced 11.64 g/L of arginine in batch fermentation, thereby demonstrating the potential of E. coli as an industrial producer of arginine.


Asunto(s)
Arginina/biosíntesis , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Carboxiliasas/genética , Carboxiliasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Ácido Glutámico/metabolismo , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA