Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 12(1): 30, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536078

RESUMEN

BACKGROUND: Aquaculture must continue to reduce dependence on fishmeal (FM) and fishoil in feeds to ensure sustainable sector growth. Therefore, the use of novel aquaculture feed ingredients is growing. In this regard, insects can represent a new world of sustainable and protein-rich ingredients for farmed fish feeds. Accordingly, we investigated the effects of full replacement of FM with Tenebrio molitor (TM) larvae meal in the diet of rainbow trout (Oncorhynchus mykiss) on fish gut and skin microbiota. METHODS: A feeding trial was conducted with 126 trout of about 80 g mean initial weight that were fed for 22 weeks with two isonitrogenous, isolipidic, and isoenergetic extruded experimental diets. Partially defatted TM meal was included in one of the diets to replace 100% (TM 100) of FM, whereas the other diet (TM 0) was without TM. To analyse the microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and Qiime pipeline were used to identify bacteria in the gut and skin mucosa, and in the diets. RESULTS: The data showed no major effects of full FM substitution with TM meal on bacterial species richness and diversity in both, gut mucosa- and skin mucus-associated microbiome. Skin microbiome was dominated by phylum Proteobacteria and especially by Gammaproteobacteria class that constituted approximately half of the bacterial taxa found. The two dietary fish groups did not display distinctive features, except for a decrease in the relative abundance of Deefgea genus (family Neisseriaceae) in trout fed with insect meal. The metagenomic analysis of the gut mucosa indicated that Tenericutes was the most abundant phylum, regardless of the diet. Specifically, within this phylum, the Mollicutes, mainly represented by Mycoplasmataceae family, were the dominant class. However, we observed only a weak dietary modulation of intestinal bacterial communities. The only changes due to full FM replacement with TM meal were a decreased number of Proteobacteria and a reduced number of taxa assigned to Ruminococcaceae and Neisseriaceae families. CONCLUSIONS: The data demonstrated that TM larvae meal is a valid alternative animal protein to replace FM in the aquafeeds. Only slight gut and skin microbiota changes occurred in rainbow trout after total FM replacement with insect meal. The mapping of the trout skin microbiota represents a novel contribution of the present study. Indeed, in contrast to the increasing knowledge on gut microbiota, the skin microbiota of major farmed fish species remains largely unmapped but it deserves thorough consideration.

2.
PLoS One ; 15(4): e0231494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298317

RESUMEN

There is an increasing interest from the aquafeed industry in functional feeds containing selected additives that improve fish growth performance and health status. Functional feed additives include probiotics, prebiotics, organic acids, and phytogenics (substances derived from plants and their extracts). This study evaluated the effects of dietary inclusion of a mucilage extract rich in galactomannan oligosaccharides (GMOS), a mixture of garlic and labiatae-plants oils (PHYTO), and a combination of them (GMOSPHYTO), on gut microbiota composition of European sea bass (Dicentrarchus labrax) fed with a low fishmeal (FM) and fish oil (FO) diet. Three experimental diets and a control diet (plant-based formulation with 10% FM and 6% FO) were tested in a 63-days feeding trial. To analyze the microbiota associated to feeds and the intestinal autochthonous (mucosa-adhered) and allochthonous (transient) microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME2 pipeline were used. Metabarcoding analysis of feed-associated bacteria showed that the microbial communities of control (CTRL) feed deeply differed from those of experimental diets. The number of reads was significantly lower in CTRL feed than in other feeds. The OTU (operational taxonomic unit) number was instead similar between the feeds, ranging from 42 to 50 OTUs. The variation of resident gut microbiota induced by diet was lower than the variation of transient intestinal microbiota, because feedstuffs are a major source of allochthonous bacteria, which can temporarily integrate into the gut transient microbiome. However, the composition of transient bacterial communities was not simply a mirror of feed-borne bacteria. Indeed, the microbial profile of feeds was different from both faecal and mucosa profiles. Our findings suggest that the dietary inclusion of GMOS (0.5%) and PHYTO (0.02%) in a low FM and FO diet induces changes in gut microbiota composition of European sea bass. However, if on allochthonous microbiota the combined inclusion of GMOS and PHYTO showed an antagonistic effect on bactericidal activity against Vibrionales, at mucosa level, only GMOSPHYTO diet increased the relative abundance of Bacteroidales, Lactobacillales, and Clostridiales resident bacterial orders. The main beneficial effects of GMOS and PHYTO on gut microbiota are the reduction of coliforms and Vibrionales bacteria, which include several potentially pathogenic species for fish, and the enrichment of gut microbiota composition with butyrate producer taxa. Therefore, these functional ingredients have a great potential to be used as health-promoting agents in the farming of European sea bass and other marine fish.


Asunto(s)
Lubina/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Aceites de Pescado/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Mananos/farmacología , Extractos Vegetales/farmacología , Compuestos Alílicos/farmacología , Alimentación Animal , Animales , Acuicultura/métodos , Lubina/crecimiento & desarrollo , Lubina/microbiología , Galactosa/análogos & derivados , Microbioma Gastrointestinal/genética , Aceites de Plantas/farmacología , ARN Ribosómico 16S/genética , Sulfuros/farmacología
3.
Cancer Epidemiol Biomarkers Prev ; 28(11): 1926-1933, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31488416

RESUMEN

BACKGROUND: The published circulating miRNA signatures proposed for early-stage non-small cell lung cancer (NSCLC) detection are inconsistent and difficult to replicate. Reproducibility and validation of an miRNA simple signature of NSCLC are prerequisites for translation to clinical application. METHODS: The serum level of miR-223 and miR-29c, emerging from published studies, respectively, as a highly sensitive and a highly specific biomarker of early-stage NSCLC, was measured with droplet digital PCR (ddPCR) technique in an Italian cohort of 75 patients with stage I-II NSCLC and 111 tumor-free controls. By ROC curve analysis we evaluated the miR-223 and miR-29c performance in discerning NSCLC cases from healthy controls. RESULTS: Reproducibility and robust measurability of the two miRNAs using ddPCR were documented. In a training set (40 stage I-II NSCLCs and 56 controls), miR-223 and miR-29c, respectively, showed an AUC of 0.753 [95% confidence interval (CI), 0.655-0.836] and 0.632 (95% CI, 0.527-0.729) in identifying NSCLC. Combination of miR-223 with miR-29c yielded an AUC of 0.750, not improved over that of miR-223 alone. Furthermore, in an independent blind set (35 stage I-II NSCLCs and 55 controls), we validated serum miR-223 as an effective biomarker of stage I-II NSCLC (AUC = 0.808; 95% CI, 0.712-0.884), confirming the miR-223 diagnostic performance reported by others in Chinese cohorts. CONCLUSIONS: Using ddPCR technology, miR-223 was externally validated as a reproducible, effective serum biomarker of early-stage NSCLC in ethnically different subjects. Combination with miR-29c did not improve the miR-223 diagnostic performance. IMPACT: Serum miR-223 determination may be proposed as a tool for refining NSCLC risk stratification, independent of smoking habit and age.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , MicroARNs/sangre , Anciano , Biomarcadores de Tumor/sangre , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Estadificación de Neoplasias
4.
Animals (Basel) ; 9(4)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30987067

RESUMEN

This study evaluated the effects of dietary insect meal from Hermetia illucens larvae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Three diets, with increasing levels of insect meal inclusion (10%, 20%, and 30%) and a control diet without insect meal were tested in a 12-week feeding trial. To analyze the resident intestinal microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. The number of reads taxonomically classified according to the Greengenes database was 1,514,155. Seventy-four Operational Taxonomic Units (OTUs) at 97% identity were identified. The core of adhered intestinal microbiota, i.e., OTUs present in at least 80% of mucosal samples and shared regardless of the diet, was constituted by three OTUs assigned to Propiobacterinae, Shewanella, and Mycoplasma genera, respectively. Fish fed the insect-based diets showed higher bacterial diversity with a reduction in Proteobacteria in comparison to fish fed the fishmeal diet. Insect-meal inclusion in the diet increased the gut abundance of Mycoplasma, which was attributed the ability to produce lactic and acetic acid as final products of its fermentation. We believe that the observed variations on the autochthonous intestinal microbiota composition of trout are principally due to the prebiotic properties of fermentable chitin.

5.
PeerJ ; 6: e5355, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083467

RESUMEN

In aquaculture research, one important aim of gut microbiota studies is to provide the scientific basis for developing effective strategies to manipulate gut microbial communities through the diet, promoting fish health and improving productivity. Currently, there is an increasing commercial and research interest towards the use of organic acids in aquafeeds, due to several beneficial effects they have on growth performance and intestinal tract's health of farmed fish. Among organic acids, monoglycerides of short-chain fatty acids (SCFAs) and medium-chain fatty acids (MCFAs) have attracted particular research attention also for their bacteriostatic and bactericidal properties. Accordingly, the present study aimed to evaluate the potential beneficial effects of SCFA and MCFA monoglycerides, used as a feed additive, on fish growth performance, and intestinal microbiota composition. For this purpose, a specific combination of short- and medium-chain 1-monoglycerides (SILOhealth 108Z) was tested in 600 juvenile gilthead sea bream (Sparus aurata) of about 60 g mean initial weight that were fed for 90 days with plant-based diets. Two isoproteic and isolipidic diets were formulated. The control fish group received a plant-based diet, whereas the other group received the same control feed, but supplemented with 0.5% of SILOhealth 108Z. The Illumina MiSeq platform for high-throughput amplicon sequencing of 16S rRNA gene and QIIME pipeline were used to analyse and characterize the whole microbiome associated both to feeds and S. aurata intestine. The number of reads taxonomically classified according to the Greengenes database was 394,611. We identified 259 OTUs at 97% identity in sea bream fecal samples; 90 OTUs constituted the core gut microbiota. Firmicutes, Proteobacteria and Actinobacteria represented the dominant phyla in both experimental groups. Among them, relative abundance of Firmicutes and Proteobacteria were positively and negatively affected by dietary SCFA monoglycerides supplementation, respectively. In summary, our findings clearly indicated that SILOhealth 108Z positively modulated the fish intestinal microbiota by increasing the number of beneficial lactic acid bacteria, namely, Lactobacillus, and reducing Gammaproteobacteria, which include several potential pathogenic bacteria. The specific composition of 1-monoglycerides of short- and medium-chain fatty acids contained in SILOhealth 108Z could thus have a great potential as a feed additive in aquaculture.

6.
J Immunol Res ; 2018: 8917804, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29507865

RESUMEN

Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in "distant" pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.


Asunto(s)
Enfermedades del Sistema Inmune/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Animales , Diferenciación Celular , Enfermedad Crónica , Citocinas/metabolismo , Humanos , Células TH1/inmunología , Células Th2/inmunología
7.
Oncotarget ; 8(55): 94980-94996, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29212284

RESUMEN

Selected circulating microRNAs (miRNAs) have been suggested for non-invasive screening of non-small cell lung cancer (NSCLC), however the numerous proposed miRNA signatures are inconsistent. Aiming to identify miRNAs suitable specifically for stage I-II NSCLC screening in serum/plasma samples, we searched the databases "Pubmed", "Medline", "Scopus", "Embase" and "WOS" and systematically reviewed the publications reporting quantitative data on the efficacy [sensitivity, specificity and/or area under the curve (AUC)] of circulating miRNAs as biomarkers of NSCLC stage I and/or II. The 20 studies fulfilling the search criteria included 1110 NSCLC patients and 1009 controls, and were of medium quality according to Quality Assessment of Diagnostic Accuracy Studies checklist. In these studies, the patient cohorts as well as the control groups were heterogeneous for demographics and clinicopathological characteristics; moreover, numerous pre-analytical and analytical variables likely influenced miRNA determinations, and potential bias of hemolysis was often underestimated. We identified four circulating miRNAs scarcely influenced by hemolysis, each featuring high sensitivity (> 80%) and AUC (> 0.80) as biomarkers of stage I-II NSCLC: miR-223, miR-20a, miR-448 and miR-145; four other miRNAs showed high specificity (> 90%): miR-628-3p, miR-29c, miR-210 and miR-1244. In a model of two-step screening for stage I-II NSCLC using first the above panel of serum miRNAs with high sensitivity and high AUC, and subsequently the panel with high specificity, the estimated overall sensitivity is 91.6% and overall specificity is 93.4%. These and other circulating miRNAs suggested for stage I-II NSCLC screening require validation in multiple independent studies before they can be proposed for clinical application.

8.
J Immunol Res ; 2017: 4218254, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28428965

RESUMEN

Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response to non-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and "distant" chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions.


Asunto(s)
Inflamación/inmunología , Células Asesinas Naturales/inmunología , Animales , Enfermedad Crónica , Humanos , Inflamación/complicaciones , Inflamación/etiología , Síndrome Metabólico/inmunología , Síndrome Metabólico/fisiopatología , Ratones , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/fisiopatología , Periodontitis/inmunología , Periodontitis/fisiopatología , Fenotipo
9.
Int J Nanomedicine ; 11: 4299-316, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27621623

RESUMEN

The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation.


Asunto(s)
Inflamación/inducido químicamente , Inflamación/metabolismo , Hígado/efectos de los fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Animales , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Luciferasas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Distribución Tisular
10.
BMC Biotechnol ; 16(1): 60, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27538962

RESUMEN

BACKGROUND: Selected microRNAs (miRNAs) that are abnormally expressed in the serum of patients with lung cancer have recently been proposed as biomarkers of this disease. The measurement of circulating miRNAs, however, requires a highly reliable quantification method. Quantitative real-time PCR (qPCR) is the most commonly used method, but it lacks reliable endogenous reference miRNAs for normalization of results in biofluids. When used in absolute quantification, it must rely on the use of external calibrators. Droplet digital PCR (ddPCR) is a recently introduced technology that overcomes the normalization issue and may facilitate miRNA measurement. Here we compared the performance of absolute qPCR and ddPCR techniques for quantifying selected miRNAs in the serum. RESULTS: In the first experiment, three miRNAs, proposed in the literature as lung cancer biomarkers (miR-21, miR-126 and let-7a), were analyzed in a set of 15 human serum samples. Four independent qPCR and four independent ddPCR amplifications were done on the same samples and used to estimate the precision and correlation of miRNA measurements obtained with the two techniques. The precision of the two methods was evaluated by calculating the Coefficient of Variation (CV) of the four independent measurements obtained with each technique. The CV was similar or smaller in ddPCR than in qPCR for all miRNAs tested, and was significantly smaller for let-7a (p = 0.028). Linear regression analysis of the miRNA values obtained with qPCR and ddPCR showed strong correlation (p < 0.001). To validate the correlation obtained with the two techniques in the first experiment, in a second experiment the same miRNAs were measured in a larger cohort (70 human serum samples) by both qPCR and ddPCR. The correlation of miRNA analyses with the two methods was significant for all three miRNAs. Moreover, in our experiments the ddPCR technique had higher throughput than qPCR, at a similar cost-per-sample. CONCLUSIONS: Analyses of serum miRNAs performed with qPCR and ddPCR were largely concordant. Both qPCR and ddPCR can reliably be used to quantify circulating miRNAs, however, ddPCR revealed similar or greater precision and higher throughput of analysis.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , MicroARNs/sangre , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Biomarcadores de Tumor/genética , Biotecnología/métodos , Análisis Químico de la Sangre/métodos , Fraccionamiento Químico/métodos , Marcadores Genéticos/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Int J Nanomedicine ; 10: 6133-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26457053

RESUMEN

Carbon nanotubes (CNTs) have been extensively investigated and employed for industrial use because of their peculiar physical properties, which make them ideal for many industrial applications. However, rapid growth of CNT employment raises concerns about the potential risks and toxicities for public health, environment, and workers associated with the manufacture and use of these new materials. Here we investigate the main routes of entry following environmental exposure to multi-wall CNTs (MWCNTs; currently the most widely used in industry). We developed a novel murine model that could represent a surrogate of a workplace exposure to MWCNTs. We traced the localization of MWCNTs and their possible role in inducing an innate immune response, inflammation, macrophage recruitment, and inflammatory conditions. Following environmental exposure of CD1 mice, we observed that MWCNTs rapidly enter and disseminate in the organism, initially accumulating in lungs and brain and later reaching the liver and kidney via the bloodstream. Since recent experimental studies show that CNTs are associated with the aggregation process of proteins associated with neurodegenerative diseases, we investigated whether MWCNTs are able to induce amyloid fibril production and accumulation. Amyloid deposits in spatial association with macrophages and MWCNT aggregates were found in the brain, liver, lungs, and kidneys of exposed animals. Our data suggest that accumulation of MWCNTs in different organs is associated with inflammation and amyloid accumulation. In the brain, where we observed rapid accumulation and amyloid fibril deposition, exposure to MWCNTs might enhance progression of neurodegenerative and other amyloid-related diseases. Our data highlight the conclusion that, in a novel rodent model of exposure, MWCNTs may induce macrophage recruitment, activation, and amyloid deposition, causing potential damage to several organs.


Asunto(s)
Amiloide/química , Exposición a Riesgos Ambientales/efectos adversos , Inflamación/inducido químicamente , Macrófagos/efectos de los fármacos , Modelos Biológicos , Nanotubos de Carbono/toxicidad , Amiloide/efectos de los fármacos , Animales , Técnica del Anticuerpo Fluorescente , Inflamación/patología , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Nanotubos de Carbono/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...