Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542941

RESUMEN

Ursodeoxycholic acid (UDCA) and acetoacetate are natural compounds present in the human intestine and blood, respectively. A number of studies highlighted that besides their well-known primary biological roles, both compounds possess the ability to influence a variety of cellular processes involved in the etiology of various diseases. These reasons suggested the potential of acetoacetate-UDCA hybrids as possible therapeutic agents and prompted us to develop a synthetic strategy to selectively derivatize the hydroxyl groups of the bile acid with acetoacetyl moieties. 3α-acetoacetoxy UDCA was obtained (60% isolated yield) via the regioselective transesterification of methyl acetoacetate with UDCA promoted by the Candida antarctica lipase B (CAL-B). 3α,7ß-bis-acetoacetoxy UDCA was obtained instead by thermal condensation of methyl acetoacetate and UDCA (80% isolated yield). This bis-adduct was finally converted to the 7ß-acetoacetoxy UDCA (82% isolated yield) via CAL-B catalyzed regioselective alcoholysis of the ester group on the 3α position. In order to demonstrate the value of the above new hybrids as UDCA-based scaffolds, 3α-acetoacetoxy UDCA was subjected to multicomponent Biginelli reaction with benzaldehyde and urea to obtain the corresponding 4-phenyl-3,4-dihydropyrimidin-2-(1H)-one derivative in 65% isolated yield.


Asunto(s)
Acetoacetatos , Ácido Ursodesoxicólico , Humanos , Ácidos y Sales Biliares
2.
J Chromatogr A ; 1713: 464530, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38035518

RESUMEN

Preparative liquid chromatography in reversed phase conditions (RPLC) is the most common approach adopted in the downstream processing for the purification of therapeutic peptides at industrial level. Due to the strict requirements on the quality imposed by the Regulatory Agencies, routinary methods based on the use of aqueous buffers and acetonitrile (ACN) as organic modifier are commonly used, where ACN is practically the only available choice for the purification of peptide derivatives. However, ACN is known to suffers of many shortcomings, such as drastic shortage in the market, high costs and, most importantly, it shows unwanted toxicity for human health and environment, which led it among the less environmentally friendly ones. For this reason, the selection of a suitable alternative becomes crucial for the sustainable downstream processing of peptides and biopharmaceuticals in general. In this paper, a promising green solvent, namely dimethyl carbonate (DMC) has been used for the separation of a peptide not only in linear conditions but also for its purification through non-linear overloaded chromatography. The performance of the process has been compared to that achievable with the common method where ACN is used as organic modifier and to that obtained with two additional solvents (namely ethanol and isopropanol), already used as greener alternatives to ACN. This proof-of-concept study showed that, thanks to its higher elution strength, DMC can be considered a green alternative to ACN, since it allows to reduce method duration while reaching good purities and recoveries. Indeed, at a target purity fixed to 98.5 %, DMC led to the best productivity with respect to all the other solvents tested, confirming its suitability as a sustainable alternative to ACN for the purification of complex biopharmaceutical products.


Asunto(s)
Cromatografía de Fase Inversa , Péptidos , Humanos , Cromatografía de Fase Inversa/métodos , Solventes/química , Acetonitrilos/química , Cromatografía Líquida de Alta Presión/métodos
3.
J Chromatogr A ; 1712: 464477, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37944433

RESUMEN

Nowadays, environmental problems are drawing the attention of governments and international organisations, which are therefore encouraging the transition to green industrial processes and approaches. In this context, chemists can help indicate a suitable direction. Beside the efforts focused on greening synthetic approaches, currently also analytical techniques and separations are under observation, especially those employing large volumes of organic solvents, such as reversed-phase liquid chromatography (RPLC). Acetonitrile has always been considered the best performing organic modifier for RPLC applications, due to its chemical features (complete miscibility in water, UV transparency, low viscosity etc); nevertheless, it suffers of severe shortcomings, and most importantly, it does not fully comply with Environmental, Health and Safety (EHS) requirements. For these reasons, alternative greener solvents are being investigated, especially easily available alcohols. In this work, chromatographic performance of the most common solvents used in reversed-phase chromatography, i.e., acetonitrile, ethanol and isopropanol, have been compared to a scarcely used solvent, dimethyl carbonate (DMC). The analytes of interest were two small molecules, caffeine and paracetamol, whose kinetics and retention behaviour obtained with the four solvents have been compared, and all contributions to band broadening have been assessed. Results about kinetic performance are very promising, indicating that a small amount (7 % v/v) of DMC is able to produce the same efficiency as a 2.5-times larger ACN volume (18 % v/v), and larger efficiency than alcohols. This paper reports, for the first time, fundamental studies concerning the mass transfer phenomena when DMC is used as an organic solvent in RPLC, and, together with the companion paper, represents the results of a research whose final aim was to discover whether DMC is suitable for chromatographic applications both in linear and preparative conditions.


Asunto(s)
Cromatografía de Fase Inversa , Etanol , Cromatografía de Fase Inversa/métodos , Solventes/química , Etanol/química , Acetonitrilos/química , Cromatografía Líquida de Alta Presión/métodos
4.
Mol Divers ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368203

RESUMEN

Various geraniol esters act as insect pheromones and display pharmacological activities, especially as neuroprotective agents. Therefore, the search for synthetic strategies alternative to traditional chemical synthesis could help designing ecofriendly routes for the preparation of such bioactive compounds. Hence, this work aims at the microwave-assisted enzymatic synthesis of geranyl esters in solvent-free systems. The process variables were optimized for the synthesis of geranyl acetoacetate, achieving 85% conversion after 60 min using a 1:5 substrates molar ratio (ester to geraniol), 80 °C and 8.4% of Lipozyme 435 lipase without removal of the co-produced methanol. On the other hand, a 95% conversion was reached after 30 min using 1:6 substrates molar ratio, 70 °C and 7% lipase in the presence of 5Å molecular sieves for the methanol capture. In addition, the lipase showed good reusability, maintaining the same activity for five reaction cycles. Finally, under the above optimized conditions, other geraniol esters were successfully synthetized such as the geranyl butyrate (98%), geranyl hexanoate (99%), geranyl octanoate (98%), and geranyl (R)-3-hydroxybutyrate (56%). These results demonstrate the microwave-assisted lipase-catalyzed transesterification in a solvent-free system as an excellent and sustainable catalytic methodology to produce geraniol esters.

5.
Chemistry ; 25(64): 14701-14710, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31486558

RESUMEN

The application of N-heterocyclic carbene (NHC) catalysis to the polycondensation of diols and dialdehydes under oxidative conditions is herein presented for the synthesis of polyesters using fossil-based (ethylene glycol, phthalaldehydes) and bio-based (furan derivatives, glycerol, isosorbide) monomers. The catalytic dimethyl triazolium/1,8-diazabicyclo[5.4.0]undec-7-ene couple and stoichiometric quinone oxidant afforded polyester oligomers with a number-average molecular weight (Mn ) in the range of 1.5-7.8 kg mol-1 as determined by NMR analysis. The synthesis of a higher molecular weight polyester (polyethylene terephthalate, PET) by an NHC-promoted two-step procedure via oligoester intermediates is also illustrated together with the catalyst-controlled preparation of cross-linked or linear polyesters derived from the trifunctional glycerol. The thermal properties (TGA and DSC analyses) of the synthesized oligoesters are also reported.

6.
Int J Anal Chem ; 2019: 7535813, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719042

RESUMEN

The retention mechanism of four major carotenoids, two xanthophylls (i.e., lutein and zeaxanthin) and two carotenes (i.e., lycopene and ß-carotene), was investigated in reversed-phase liquid chromatography with the aim of thermodynamic analysis. The experimental variables considered in this study were the composition of mobile phase (MP) and the temperature. Chromatographic elutions were undertaken under linear, isocratic conditions by using a C18 stationary phase, four different MP compositions (by varying the ratio methanol/acetonitrile from 66.5/28.5 to 47.5/47.5 v/v), and column temperatures in the range 283-313 K. Traditional Van't Hoff analysis has been used to estimate changes of standard enthalpy (ΔH°) and Gibbs free energy (ΔG°) associated with the solute transfer from the mobile to the stationary phase at each mobile phase composition. The thermodynamic quantities have been correlated to the structure of investigated carotenoids and their interaction with the octadecyl silica stationary phase.

7.
RSC Adv ; 9(50): 29044-29050, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35528403

RESUMEN

5,5'-Dihydroxymethyl furoin (DHMF) is a novel biobased difuranic polyol scaffold, achievable from the benzoin condensation of 5-hydroxymethylfurfural (HMF), which has recently been employed as a monomer for the preparation of cross-linked polyesters and polyurethane. Its upgrading by means of enzymatic reactions has not yet been reported. Here we demonstrated that Candida antarctica lipase B (CALB) is a suitable biocatalyst for the selective esterification of the primary hydroxyl groups of DHMF. Exploiting this enzymatic activity, DHMF has been reacted with the diethyl esters of succinic and sebacic acids obtaining fully biobased linear oligoesters with number-average molecular weight around 1000 g mol-1 and free hydroxyl groups on the polymer backbone. The structures of the DHMF-diacid ethyl ester dimers and of the oligomers were elucidated by NMR and MS analyses.

8.
Org Biomol Chem ; 16(46): 8955-8964, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30403257

RESUMEN

The application of the oxidative system composed of a heterogeneous triazolium pre-catalyst, iron(ii) phthalocyanine and air is described for the selective conversion of 5-hydroxymethylfurfural (HMF) into the added-value 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). The disclosed one-pot two-step procedure involved sequential oxidative esterifications of HMF to afford a polyester oligomer having hydroxyl and carboxyl terminal groups (Mw = 389-1258), which in turn was hydrolyzed by a supported base (Ambersep 900 OH) to yield HMFCA in 87% overall yield. The same strategy was adopted for the effective synthesis of ester and amide derivatives of HMFCA by nucleophilic depolymerization of the oligomeric intermediate with methanol and butylamine, respectively. The utilization of the disclosed oxidative system for the direct conversion of HMF and furfural into their corresponding ester, amide, and thioester derivatives is also reported.

9.
J Org Chem ; 83(4): 2050-2057, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29338235

RESUMEN

A chiral NHC-catalyzed dearomatizing reaction of activated N-alkylpyridinium salts with aliphatic aldehydes is described. The resulting acylated 1,4-dihydropyridines have been obtained with complete C4 regioselectivity and enantioselectivities in the range 52-78% ee. The (4R)-absolute configuration of the synthesized compounds has been determined by the TD-DFT simulation of the electronic circular dichroism spectra.

10.
Org Biomol Chem ; 15(41): 8788-8801, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29019504

RESUMEN

A strategy for the synthesis of biologically relevant 5-hydroxy-imidazolidine-2-thione derivatives is presented. A novel class of α-sulfonylamines have been suitably prepared (46-81% yield) as precursors of formal benzylidenethiourea acceptors; these are generated in situ and intercepted by N-heterocyclic carbene (NHC)-activated aldehydes affording open-chain aza-benzoin-type adducts, which in turn undergo an intramolecular aza-acetalization reaction in a one-pot fashion. A thiazolium salt/triethylamine couple proved to be the more effective system to trigger the domino sequence giving the target heterocycles in good yields (45-97%) and diastereoselectivities (up to 99 : 1 dr). The multigram scale synthesis and elaboration of a selected 5-hydroxy-imidazolidine-2-thione compound is also described.

11.
Org Biomol Chem ; 14(41): 9823-9835, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27722712

RESUMEN

The condensation of aromatic α-diketones (benzils) with aromatic aldehydes (benzoin-type reaction) and chalcones (Stetter-type reaction) in DMF in the presence of catalytic (25 mol%) KOtBu is reported. Both types of umpolung processes proceed with good efficiency and complete chemoselectivity. On the basis of spectroscopic evidence (MS analysis) of plausible intermediates and literature reports, the occurrence of different ionic pathways have been evaluated to elucidate the mechanism of a model cross-benzoin-like reaction along with a radical route initiated by an electron-transfer process to benzil from the carbamoyl anion derived from DMF. This mechanistic investigation has culminated in a different proposal, supported by calculations and a trapping experiment, based on double electron-transfer to benzil with formation of the corresponding enediolate anion as the key reactive intermediate. A mechanistic comparison between the activation modes of benzils in KOtBu-DMF and KOtBu-DMSO systems is also described.

12.
Beilstein J Org Chem ; 12: 2719-2730, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144342

RESUMEN

A convenient heterogeneous continuous-flow procedure for the polarity reversal of aromatic α-diketones is presented. Propaedeutic batch experiments have been initially performed to select the optimal supported base capable to initiate the two electron-transfer process from the carbamoyl anion of the N,N-dimethylformamide (DMF) solvent to the α-diketone and generate the corresponding enediolate active species. After having identified the 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine on polystyrene (PS-BEMP) as the suitable base, packed-bed microreactors (pressure-resistant stainless-steel columns) have been fabricated and operated to accomplish the chemoselective synthesis of aroylated α-hydroxy ketones and 2-benzoyl-1,4-diones (benzoin- and Stetter-like products, respectively) with a good level of efficiency and with a long-term stability of the packing material (up to five days).

13.
Angew Chem Int Ed Engl ; 54(24): 7171-5, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25914187

RESUMEN

The thiamine diphosphate (ThDP) dependent enzyme acetoin:dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The recombinant enzyme shared close similarities with the acetylacetoin synthase (AAS) partially purified from Bacillus licheniformis suggesting that they could be the same enzyme. The product scope of the recombinant Ao:DCPIP OR was expanded to chiral tertiary α-hydroxy ketones through the rare aldehyde-ketone cross-carboligation reaction. Unprecedented is the use of methylacetoin as the acetyl anion donor in combination with a range of strongly to weakly activated ketones. In some cases, Ao:DCPIP OR produced the desired tertiary alcohols with stereochemistry opposite to that obtained with other ThDP-dependent enzymes. The combination of methylacetoin as acyl anion synthon and novel ThDP-dependent enzymes considerably expands the available range of C-C bond formations in asymmetric synthesis.


Asunto(s)
Aldehídos/química , Cetonas/química , Oxidorreductasas/metabolismo , Alcoholes/química , Alcoholes/metabolismo , Bacillus/enzimología , Biocatálisis , Escherichia coli/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Estereoisomerismo
14.
J Org Chem ; 80(3): 1937-45, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25542390

RESUMEN

Dimsyl anion promoted the polarity reversal of benzils in a Stetter-like reaction with chalcones to give 2-benzoyl-1,4-diones (double aroylation products), which, in turn, were converted into the corresponding tetrasubstituted olefins via aerobic oxidative dehydrogenation catalyzed by Cu(OAc)2.

15.
Angew Chem Int Ed Engl ; 53(52): 14402-6, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25382418

RESUMEN

ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant.


Asunto(s)
Hidrolasas/metabolismo , Tiamina Pirofosfato/química , Sustitución de Aminoácidos , Azoarcus/enzimología , Benzoína/química , Biocatálisis , Carbono/química , Dominio Catalítico , Ciclohexanonas/química , Ciclohexanonas/metabolismo , Hidrolasas/química , Hidrolasas/genética , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Tiamina Pirofosfato/metabolismo
16.
Org Biomol Chem ; 12(30): 5733-44, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-24967946

RESUMEN

An operationally simple one-pot, two-step procedure for the desymmetrization of benzils is herein described. This consists in the chemoselective cross-benzoin reaction of symmetrical benzils with aromatic aldehydes catalyzed by the methyl sulfinyl (dimsyl) anion, followed by microwave-assisted oxidation of the resulting benzoylated benzoins with nitrate, avoiding the costly isolation procedure. Both electron-withdrawing and electron-donating substituents may be accommodated on the aromatic rings of the final unsymmetrical benzil.


Asunto(s)
Aniones/química , Química Orgánica/métodos , Fenilglioxal/análogos & derivados , Compuestos de Sulfonio/química , Benzoína/química , Catálisis , Oxidación-Reducción , Fenilglioxal/síntesis química , Fenilglioxal/química
17.
Chem Biodivers ; 10(10): 1909-19, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24130034

RESUMEN

The biotransformations of (RS)-linalool (1), (S)-citronellal (2), and sabinene (3) with fungi isolated from the epicarp of fruits of Citrus genus of the Amazonian forest (i.e., C. limon, C. aurantifolia, C. aurantium, and C. paradisiaca) are reported. The more active strains have been characterized, and they belong to the genus Penicillium and Fusarium. Different biotransformation products have been obtained depending on fungi and substrates. (RS)-Linalool (1) afforded the (E)- and (Z)-furanlinalool oxides (7 and 8, resp.; 39 and 37% yield, resp.) with Fusarium sp. (1D2), 6-methylhept-5-en-2-one (4; 49%) with F. fujikuroi, and 1-methyl-1-(4-methypentyl)oxiranemethanol (6; 42%) with F. concentricum. (S)-Citronellal (2) gave (S)-citronellol (12; 36-76%) and (S)-citronellic acid (11; 5-43%) with Fusarium species, while diastereoisomeric p-menthane-3,8-diols 13 and 14 (20 and 50% yield, resp.) were obtained as main products with Penicillium paxilli. Finally, both Fusarium species and P. paxilli biotransformed sabinene (3) to give mainly 4-terpineol (19; 23-56%), and (Z)- and (E)-sabinene hydrates (17 (3-21%) and 18 (11-17%), resp.).


Asunto(s)
Citrus/microbiología , Hongos/metabolismo , Terpenos/metabolismo , Monoterpenos Acíclicos , Aldehídos/química , Aldehídos/metabolismo , Monoterpenos Bicíclicos , Biotransformación , Ecuador , Frutas/microbiología , Hongos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/química , Monoterpenos/metabolismo , Estereoisomerismo , Terpenos/química
18.
Chemistry ; 19(24): 7802-8, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23589216

RESUMEN

The heterogeneous proline-catalyzed aldol reaction was investigated under continuous-flow conditions by means of a packed-bed microreactor. Reaction-progress kinetic analysis (RPKA) was used in combination with nonlinear chromatography for the interpretation, under synthetically relevant conditions, of important mechanistic aspects of the heterogeneous catalytic process at a molecular level. The information gathered by RPKA and nonlinear chromatography proved to be highly complementary and allowed for the assessment of optimal operating variables. In particular, the determination of the rate-determining step was pivotal for optimizing the feed composition. On the other hand, the competitive product inhibition was responsible for the unexpected decrease in the reaction yield following an apparently obvious variation in the feed composition. The study was facilitated by a suitable 2D instrumental arrangement for simultaneous flow reaction and online flow-injection analysis.


Asunto(s)
Aldehídos/química , Modelos Químicos , Prolina/química , Catálisis , Cromatografía , Ciclohexanonas/análisis , Análisis de Inyección de Flujo , Cinética , Estructura Molecular , Termodinámica
19.
Phytochemistry ; 81: 50-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22769437

RESUMEN

Teucrium chamaedrys, one of the most common and investigated species of the genus Teucrium, has been used for centuries in traditional medicine for many purposes. Its phytochemical components comprise, among others, phenylethanoid glycosides (PGs) and neo-clerodane diterpenoids. Several reports have demonstrated a wide range of beneficial biological and pharmacological activities of the phenylethanoid components, while the diterpenes were shown to be strongly hepatotoxic. In this work, in vitro cultures were established from leaf explants of T. chamaedrys. Both solid (callus) and liquid (cell suspension) cultures maintained the capacity to produce PGs, with teucrioside (TS) representing the most abundant one. Cell suspensions had a lower TS content than that found in leaf extracts, but higher than that of calli. An NMR-based metabolomics approach was used to compare the product profile of intact plants vs. cell suspension cultures, and results showed that neo-clerodane diterpenes, present in the intact plant, were not detected in cell cultures. Several elicitors were supplied to cell cultures with the aim of increasing TS production, and elicitation was tested at different growth phases and by exposing cells for different periods. Methyl jasmonate and fungal mycelia from Trichoderma viridae and Fusarium moniliforme were able to significantly increase TS production if supplied at the early-exponential growth phase for 24h. Based on the proposed link between proline and the phenylpropanoid pathways, proline accumulation in cell cultures was followed throughout a 14-day culture period, showing that it strictly reflected that of TS production. Moreover, exogenously supplied proline, and its analogue hydroxyproline, turned out to be very effective in increasing teucrioside production.


Asunto(s)
Ácidos Cafeicos/química , Técnicas de Cultivo de Célula/métodos , Diterpenos de Tipo Clerodano/aislamiento & purificación , Glicósidos/química , Teucrium/química , Acetatos/farmacología , Ácidos Cafeicos/farmacología , Quitosano/farmacología , Ciclopentanos/farmacología , Diterpenos de Tipo Clerodano/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Fusarium/química , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Hidroxiprolina/farmacología , Metaboloma , Metabolómica , Micelio/química , Oxilipinas/farmacología , Células Vegetales/química , Células Vegetales/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Prolina/química , Prolina/farmacología , Teucrium/efectos de los fármacos , Teucrium/crecimiento & desarrollo , Factores de Tiempo , Trichoderma/química
20.
Org Biomol Chem ; 10(32): 6579-86, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22766681

RESUMEN

Diaryl α-diketones do not undergo polarity reversal in the presence of (benzo)thiazolium carbenes but are engaged in a novel multicomponent reaction with water to efficiently give medicinally relevant 1,4-thiazin-3-one heterocycles. Three different sets of conditions have been optimized to furnish the title compounds in fair to excellent yields depending on the electronic properties of α-diketone aromatic substituents and thiazolium or benzothiazolium substrate. A plausible reaction mechanism is also proposed based on the isolation and characterization of the postulated key intermediate and isotopic labeling experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...