Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(8)2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37190021

RESUMEN

The Thinopyrum elongatum Fhb7E locus has been proven to confer outstanding resistance to Fusarium Head Blight (FHB) when transferred into wheat, minimizing yield loss and mycotoxin accumulation in grains. Despite their biological relevance and breeding implications, the molecular mechanisms underlying the resistant phenotype associated with Fhb7E have not been fully uncovered. To gain a broader understanding of processes involved in this complex plant-pathogen interaction, we analysed via untargeted metabolomics durum wheat (DW) rachises and grains upon spike inoculation with Fusarium graminearum (Fg) and water. The employment of DW near-isogenic recombinant lines carrying or lacking the Th. elongatum chromosome 7E region including Fhb7E on their 7AL arm, allowed clear-cut distinction between differentially accumulated disease-related metabolites. Besides confirming the rachis as key site of the main metabolic shift in plant response to FHB, and the upregulation of defence pathways (aromatic amino acid, phenylpropanoid, terpenoid) leading to antioxidants and lignin accumulation, novel insights were revealed. Fhb7E conferred constitutive and early-induced defence response, in which specific importance of polyamine biosynthesis, glutathione and vitamin B6 metabolisms, along with presence of multiple routes for deoxynivalenol detoxification, was highlighted. The results suggested Fhb7E to correspond to a compound locus, triggering a multi-faceted plant response to Fg, effectively limiting Fg growth and mycotoxin production.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Poaceae , Triticum , Poaceae/genética , Metabolómica , Sitios Genéticos , Fusarium/crecimiento & desarrollo , Triticum/genética , Triticum/inmunología , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Cromosomas de las Plantas , Poliaminas/metabolismo , Ingeniería Genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología
2.
Plants (Basel) ; 12(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840052

RESUMEN

Abiotic stress occurrence and magnitude are alarmingly intensifying worldwide. In the Mediterranean basin, heat waves and precipitation scarcity heavily affect major crops such as durum wheat (DW). In the search for tolerant genotypes, the identification of genes/QTL in wild wheat relatives, naturally adapted to harsh environments, represents a useful strategy. We tested three DW-Thinopyrum ponticum recombinant lines (R5+, R112+, R23+), their control sibs lacking any alien introgression, and the heat-tolerant cv. Margherita for their physiological, biochemical and yield response to heat stress (HS) application at anthesis, also in combination with water-deficit stress applied from booting until maturity. Under HS, R5+ and R112+ (23%- and 28%-long 7el1L Th. ponticum chromosome segment distally inserted on DW 7AL, respectively) showed remarkable stability of the yield-related traits; in turn, R23+ (40%-long 7el1L segment), despite a decreased grain yield, exhibited a greater spike fertility index and proline content in spike than its control sib. Under water-deficit + HS, R5+ showed the highest increment in water use efficiency and in flag leaf proline content, accompanied by the lowest yield penalty even vs. Margherita. This research confirms the value of harnessing wild gene pools to enhance DW stress tolerance and represents a starting point for elucidating the mechanisms of Thinopyrum spp. contribution to this relevant breeding target.

3.
Plants (Basel) ; 10(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808545

RESUMEN

Today wheat cultivation is facing rapidly changing climate scenarios and yield instability, aggravated by the spreading of severe diseases such as Fusarium head blight (FHB) and Fusarium crown rot (FCR). To obtain productive genotypes resilient to stress pressure, smart breeding approaches must be envisaged, including the exploitation of wild relatives. Here we report on the assessment of the breeding potential of six durum wheat-Thinopyrum spp. recombinant lines (RLs) obtained through chromosome engineering. They are characterized by having 23% or 28% of their 7AL chromosome arm replaced by a "nested" alien segment, composed of homoeologous group 7 chromosome fractions from Th. ponticum and Th. elongatum (=7el1L + 7EL) or from different Th. ponticum accessions (=7el1L + 7el2L). In addition to the 7el1L genes Lr19 + Yp (leaf rust resistance, and yellow pigment content, respectively), these recombinant lines (RLs) possess a highly effective QTL for resistance to FHB and FCR within their 7el2L or 7EL portion. The RLs, their null segregants and well-adapted and productive durum wheat cultivars were evaluated for 16 yield-related traits over two seasons under rainfed and irrigated conditions. The absence of yield penalties and excellent genetic stability of RLs was revealed in the presence of all the alien segment combinations. Both 7el2L and 7EL stacked introgressions had positive impacts on source and sink yield traits, as well as on the overall performance of RLs in conditions of reduced water availability. The four "nested" RLs tested in 2020 were among the top five yielders, overall representing good candidates to be employed in breeding programs to enhance crop security and safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...