Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(9): eadf1785, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867703

RESUMEN

Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3' splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA-mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3'ss. Cryo-electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3' region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3'ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3'ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3'ss choices.


Asunto(s)
Sitios de Empalme de ARN , Empalmosomas , Humanos , Microscopía por Crioelectrón , Empalme Alternativo , Intrones
3.
Mol Cell ; 77(6): 1322-1339.e11, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32006464

RESUMEN

Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/metabolismo , Transcripción Genética , Animales , Núcleo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Quinasas/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Proteínas Represoras/genética , Empalmosomas/genética
4.
Nat Commun ; 10(1): 3639, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409787

RESUMEN

Human pre-catalytic spliceosomes contain several proteins that associate transiently just prior to spliceosome activation and are absent in yeast, suggesting that this critical step is more complex in higher eukaryotes. We demonstrate via RNAi coupled with RNA-Seq that two of these human-specific proteins, Smu1 and RED, function both as alternative splicing regulators and as general splicing factors and are required predominantly for efficient splicing of short introns. In vitro splicing assays reveal that Smu1 and RED promote spliceosome activation, and are essential for this step when the distance between the pre-mRNA's 5' splice site (SS) and branch site (BS) is sufficiently short. This Smu1-RED requirement can be bypassed when the 5' and 3' regions of short introns are physically separated. Our observations suggest that Smu1 and RED relieve physical constraints arising from a short 5'SS-BS distance, thereby enabling spliceosomes to overcome structural challenges associated with the splicing of short introns.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Citocinas/metabolismo , Intrones , Empalme del ARN , Empalmosomas/metabolismo , Proteínas Cromosómicas no Histona/genética , Citocinas/genética , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalmosomas/genética
5.
Am J Hum Genet ; 105(3): 573-587, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447096

RESUMEN

A precise genetic diagnosis is the single most important step for families with genetic disorders to enable personalized and preventative medicine. In addition to genetic variants in coding regions (exons) that can change a protein sequence, abnormal pre-mRNA splicing can be devastating for the encoded protein, inducing a frameshift or in-frame deletion/insertion of multiple residues. Non-coding variants that disrupt splicing are extremely challenging to identify. Stemming from an initial clinical discovery in two index Australian families, we define 25 families with genetic disorders caused by a class of pathogenic non-coding splice variant due to intronic deletions. These pathogenic intronic deletions spare all consensus splice motifs, though they critically shorten the minimal distance between the 5' splice-site (5'SS) and branchpoint. The mechanistic basis for abnormal splicing is due to biophysical constraint precluding U1/U2 spliceosome assembly, which stalls in A-complexes (that bridge the 5'SS and branchpoint). Substitution of deleted nucleotides with non-specific sequences restores spliceosome assembly and normal splicing, arguing against loss of an intronic element as the primary causal basis. Incremental lengthening of 5'SS-branchpoint length in our index EMD case subject defines 45-47 nt as the critical elongation enabling (inefficient) spliceosome assembly for EMD intron 5. The 5'SS-branchpoint space constraint mechanism, not currently factored by genomic informatics pipelines, is relevant to diagnosis and precision medicine across the breadth of Mendelian disorders and cancer genomics.


Asunto(s)
Intrones , Empalme del ARN , Empalmosomas , Adolescente , Adulto , Fenómenos Biofísicos , Niño , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje
6.
Nucleic Acids Res ; 46(7): 3774-3790, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29415178

RESUMEN

Cajal bodies (CBs) are nuclear non-membrane bound organelles where small nuclear ribonucleoprotein particles (snRNPs) undergo their final maturation and quality control before they are released to the nucleoplasm. However, the molecular mechanism how immature snRNPs are targeted and retained in CBs has yet to be described. Here, we microinjected and expressed various snRNA deletion mutants as well as chimeric 7SK, Alu or bacterial SRP non-coding RNAs and provide evidence that Sm and SMN binding sites are necessary and sufficient for CB localization of snRNAs. We further show that Sm proteins, and specifically their GR-rich domains, are important for accumulating snRNPs in CBs. Accordingly, core snRNPs containing the Sm proteins, but not naked snRNAs, restore the formation of CBs after their depletion. Finally, we show that immature but not fully assembled snRNPs are able to induce CB formation and that microinjection of an excess of U2 snRNP-specific proteins, which promotes U2 snRNP maturation, chases U2 snRNA from CBs. We propose that the accessibility of the Sm ring represents the molecular basis for the quality control of the final maturation of snRNPs and the sequestration of immature particles in CBs.


Asunto(s)
Núcleo Celular/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Empalmosomas/genética , Cuerpos Enrollados/genética , Cuerpos Enrollados/metabolismo , Regulación de la Expresión Génica/genética , Células HeLa , Humanos
7.
Nat Commun ; 3: 994, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22871813

RESUMEN

There is little quantitative information regarding how much splicing occurs co-transcriptionally in higher eukaryotes, and it remains unclear where precisely splicing occurs in the nucleus. Here we determine the global extent of co- and post-transcriptional splicing in mammalian cells, and their respective subnuclear locations, using antibodies that specifically recognize phosphorylated SF3b155 (P-SF3b155) found only in catalytically activated/active spliceosomes. Quantification of chromatin- and nucleoplasm-associated P-SF3b155 after fractionation of HeLa cell nuclei, reveals that ~80% of pre-mRNA splicing occurs co-transcriptionally. Active spliceosomes localize in situ to regions of decompacted chromatin, at the periphery of or within nuclear speckles. Immunofluorescence microscopy with anti-P-SF3b155 antibodies, coupled with transcription inhibition and a block in splicing after SF3b155 phosphorylation, indicates that post-transcriptional splicing occurs in nuclear speckles and that release of post-transcriptionally spliced mRNA from speckles is coupled to the nuclear mRNA export pathway. Our data provide new insights into when and where splicing occurs in cells.


Asunto(s)
Núcleo Celular/metabolismo , Empalme del ARN/fisiología , Empalmosomas/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Microscopía Fluorescente , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Empalme del ARN/genética , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo
8.
EMBO J ; 30(11): 2205-18, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21522132

RESUMEN

Transport of C/D snoRNPs to nucleoli involves nuclear export factors. In particular, CRM1 binds nascent snoRNPs, but its precise role remains unknown. We show here that both CRM1 and nucleocytoplasmic trafficking are required to transport snoRNPs to nucleoli, but the snoRNPs do not transit through the cytoplasm. Instead, CRM1 controls the composition of nucleoplasmic pre-snoRNP complexes. We observed that Tgs1 long form (Tgs1 LF), the long isoform of the cap hypermethylase, contains a leucine-rich nuclear export signal, shuttles in a CRM1-dependent manner, and binds to the nucleolar localization signal (NoLS) of the core snoRNP protein Nop58. In vitro data indicate that CRM1 binds Tgs1 LF and promotes its dissociation from Nop58 NoLS, and immunoprecipitation experiments from cells indicate that the association of Tgs1 LF with snoRNPs increases upon CRM1 inhibition. Thus, CRM1 appears to promote nucleolar transport of snoRNPs by removing Tgs1 LF from the Nop58 NoLS. Microarray/IP data show that this occurs on most snoRNPs, from both C/D and H/ACA families, and on the telomerase RNA. Hence, CRM1 provides a general molecular link between nuclear events and nucleocytoplasmic trafficking.


Asunto(s)
Núcleo Celular/metabolismo , Carioferinas/metabolismo , ARN Nucleolar Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Humanos , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Proteína Exportina 1
9.
J Biol Chem ; 283(4): 2060-9, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18039666

RESUMEN

Tgs1 is the hypermethylase responsible for m(3)G cap formation of U small nuclear RNAs (U snRNAs) and small nucleolar RNAs (snoRNAs). In vertebrates, hypermethylation of snRNAs occurs in the cytoplasm, whereas this process takes place in the nucleus for snoRNAs. Accordingly, the hypermethylase is found in both compartments with a diffuse localization in the cytoplasm and a concentration in Cajal bodies in the nucleoplasm. In this study, we report that the Tgs1 hypermethylase exists as two species, a full-length cytoplasmic isoform and a shorter nuclear isoform of 65-70 kDa. The short isoform exhibits methyltransferase activity and associates with components of box C/D and H/ACA snoRNPs, pointing to a role of this isoform in hypermethylation of snoRNAs. We also show that production of the short Tgs1 isoform is inhibited by MG132, suggesting that it results from proteasomal limited processing of the full-length Tgs1 protein. Together, our results suggest that proteasome maturation constitutes a mechanism regulating Tgs1 function by generating Tgs1 species with different substrate specificities, subcellular localizations, and functions.


Asunto(s)
Núcleo Celular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Nuclear Pequeño/metabolismo , ARNt Metiltransferasas/metabolismo , Antineoplásicos/farmacología , Núcleo Celular/genética , Citoplasma/enzimología , Citoplasma/genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leupeptinas/farmacología , Metilación/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Caperuzas de ARN/genética , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Nuclear Pequeño/genética , ARNt Metiltransferasas/genética
10.
Nucleic Acids Res ; 34(10): 2925-32, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16738131

RESUMEN

Neuronal degeneration in spinal muscular atrophy (SMA) is caused by reduced expression of the survival of motor neuron (SMN) protein. The SMN protein is ubiquitously expressed and is present both in the cytoplasm and in the nucleus where it localizes in Cajal bodies. The SMN complex plays an essential role for the biogenesis of spliceosomal U-snRNPs. In this article, we have used an RNA interference approach in order to analyse the effects of SMN depletion on snRNP assembly in HeLa cells. Although snRNP profiles are not perturbed in SMN-depleted cells, we found that SMN depletion gives rise to cytoplasmic accumulation of a GFP-SmB reporter protein. We also demonstrate that the SMN protein depletion induces defects in Cajal body formation with coilin being localized in multiple nuclear foci and in nucleolus instead of canonical Cajal bodies. Interestingly, the coilin containing foci do not contain snRNPs but appear to co-localize with U85 scaRNA. Because Cajal bodies represent the location in which snRNPs undergo 2'-O-methylation and pseudouridylation, our results raise the possibility that SMN depletion might give rise to a defect in the snRNA modification process.


Asunto(s)
Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Autoantígenos/análisis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Citoplasma/química , Células HeLa , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/análisis , Interferencia de ARN , ARN Nuclear Pequeño/análisis , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/análisis , Proteínas del Complejo SMN , Proteínas Nucleares snRNP , ARN Pequeño no Traducido
11.
Mol Biol Cell ; 17(7): 3221-31, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16687569

RESUMEN

Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.


Asunto(s)
Cuerpos Enrollados/metabolismo , Cuerpos Enrollados/ultraestructura , Proteínas Nucleares/análisis , Ribonucleoproteínas Nucleares Pequeñas/análisis , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Núcleo Celular/química , Núcleo Celular/ultraestructura , Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Células HeLa , Humanos , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inhibidores , Proteínas de Transporte Nucleocitoplasmático/genética , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/análisis , Proteínas del Complejo SMN , Empalmosomas/metabolismo , Empalmosomas/ultraestructura
12.
Gene ; 371(1): 25-33, 2006 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-16459028

RESUMEN

We characterized the mouse ortholog of the human MLL3 gene and a 10.6 kb-Mll3 transcript. The mouse Mll3 gene comprises 60 exons that encompass 226 kb in chromosome 5. The predicted protein of 3464 amino acids contains two PHD domains, an ATPase alpha_beta signature, an HMG, and a SET domain. We analyzed the expression of the Mll3 gene during the embryonic development of the mouse by whole-mount in situ hybridization. Low levels of expression throughout the embryo were first detected at 8.0 dpc. At this stage, the signal was already stronger in the forebrain neuroepithelium and absent in the heart. Next, expression outlined the ventral neural tube, the somites, the limbs, and the eye lens remaining at low levels throughout the embryo. By 13.0 dpc, expression became stronger in the spinal cord, in hand/foot plates, and in gonads. RT-PCR confirmed that Mll3 is expressed early during gametogenesis. We suggest that Mll3 is expressed early in pre-spermatogonia and then in spermatogonia.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/biosíntesis , Proteína de la Leucemia Mieloide-Linfoide/biosíntesis , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Médula Espinal/embriología , Testículo/embriología , Animales , Extremidades/embriología , N-Metiltransferasa de Histona-Lisina/genética , Hibridación in Situ/métodos , Masculino , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Especificidad de Órganos/fisiología , Espermatogonias/citología , Médula Espinal/citología , Testículo/citología
13.
Mol Cell ; 16(5): 777-87, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15574332

RESUMEN

To better understand intranuclear-targeting mechanisms, we have studied the transport of U3 snoRNA in human cells. Surprisingly, we found that PHAX, the snRNA export adaptor, is highly enriched in complexes containing m7G-capped U3 precursors. In contrast, the export receptor CRM1 is predominantly bound to TMG-capped U3 species. In agreement, PHAX does not export m7G-capped U3 precursors because their caps become hypermethylated in the nucleus. Inactivation of PHAX and CRM1 shows that U3 first requires PHAX to reach Cajal bodies, and then CRM1 to be routed from there to nucleoli. Furthermore, PHAX also binds the precursors of U8 and U13 box C/D snoRNAs and telomerase RNA. PHAX was previously shown to discriminate between small versus large RNAs during export. Our data indicate that the role of PHAX in determining the identity of small RNAs extends to nonexported species, and this appears critical to promote their transport within the nucleus.


Asunto(s)
Nucléolo Celular/metabolismo , Carioferinas/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Fosfoproteínas/fisiología , ARN Nucleolar Pequeño/química , Receptores Citoplasmáticos y Nucleares/fisiología , Secuencias de Aminoácidos , Transporte Biológico , Técnicas de Cultivo de Célula , Línea Celular , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Metilación de ADN , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Hibridación in Situ , Microscopía Fluorescente , Plásmidos/metabolismo , ARN/química , ARN/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Telomerasa/metabolismo , Transfección , Proteína Exportina 1
14.
Exp Cell Res ; 299(1): 199-208, 2004 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-15302587

RESUMEN

The nuclear import signal of snRNPs is composed of two essential components, the m(3)G cap structure of the snRNA and the Sm core NLS carried by the Sm protein core complex. We have previously proposed that, in yeast, this last determinant is represented by a basic-rich protuberance formed by the C-terminal extensions of Sm proteins. In mammals, as well as in other organisms, this component has not yet been precisely defined. Using GFP-Sm fusion constructs and immunolocalization as well as biochemical experiments, we show here that the C-terminal domains of human SmD1 and SmD3 proteins possess nuclear localization properties. Deletions of these domains increase cytoplasmic fluorescence and cytoplasmic localization of GFP-Sm mutant fusion alleles. Our results are consistent with a model in which the Sm core NLS is evolutionarily conserved and composed of a basic-rich protuberance formed by C-terminal domains of different Sm subtypes.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transporte Activo de Núcleo Celular/genética , Animales , Autoantígenos , Citoplasma/genética , Citoplasma/metabolismo , Evolución Molecular , Humanos , Sustancias Macromoleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína/genética , ARN Nuclear Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Proteínas Nucleares snRNP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...