Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Eur J Hum Genet ; 32(1): 91-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37016017

RESUMEN

Using genealogy to study the demographic history of a population makes it possible to overcome the models and assumptions often used in population genetics. The Quebec founder population is one of the few populations in the world having access to the complete genealogy of the last 400 years. The goal of this study is to follow the evolution of the Quebec population structure over time from the beginning of European colonization until the present day. To do so, we calculated the kinship coefficients of all ancestors' pairs in the ascending genealogy of 665 subjects from eight regional and ethnocultural groups per 25-year period. We show that the Quebec population structure appeared progressively in the St. Lawrence valley as early as 1750 with the distinction of the Saguenay and Gaspesian groups. At that time, the ancestors of two groups, the Sagueneans and the Acadians from the Gaspé Peninsula, experienced a marked increase in kinship and inbreeding levels which have shaped the structure and led to the contemporary population structure. Interestingly, this structure arose before the colonization of the Saguenay region and at the very beginning of the Gaspé Peninsula settlement. The resulting regional founder effects in these groups led to differences in the present-day identity-by-descent sharing, the Gaspé and North Shore groups sharing more large segments and the Sagueneans more short segments. This is also reflected by the distribution of the number of most recent common ancestors at different generations and their genetic contribution to the studied subjects.


Asunto(s)
Familia , Genética de Población , Humanos , Quebec/epidemiología , Linaje , Efecto Fundador , Estructuras Genéticas
2.
PLoS One ; 18(9): e0291935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756314

RESUMEN

The discovery of new variants has leveled off in recent years in epilepsy studies, despite the use of very large cohorts. Consequently, most of the heritability is still unexplained. Rare non-coding variants have been largely ignored in studies on epilepsy, although non-coding single nucleotide variants can have a significant impact on gene expression. We had access to whole genome sequencing (WGS) from 247 epilepsy patients and 377 controls. To assess the functional impact of non-coding variants, ExPecto, a deep learning algorithm was used to predict expression change in brain tissues. We compared the burden of rare non-coding deleterious variants between cases and controls. Rare non-coding highly deleterious variants were significantly enriched in Genetic Generalized Epilepsy (GGE), but not in Non-Acquired Focal Epilepsy (NAFE) or all epilepsy cases when compared with controls. In this study we showed that rare non-coding deleterious variants are associated with epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be needed to investigate those effects at a greater resolution. Nevertheless, we demonstrated the importance of studying non-coding regions in epilepsy, a disease where new discoveries are scarce.


Asunto(s)
Epilepsias Parciales , Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia/genética , Epilepsia Generalizada/genética , Algoritmos , Secuenciación Completa del Genoma
3.
HGG Adv ; 4(3): 100209, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37333772

RESUMEN

Genetic correlations between human traits and disorders such as schizophrenia (SZ) and bipolar disorder (BD) diagnoses are well established. Improved prediction of individual traits has been obtained by combining predictors of multiple genetically correlated traits derived from summary statistics produced by genome-wide association studies, compared with single trait predictors. We extend this idea to penalized regression on summary statistics in Multivariate Lassosum, expressing regression coefficients for the multiple traits on single nucleotide polymorphisms (SNPs) as correlated random effects, similarly to multi-trait summary statistic best linear unbiased predictors (MT-SBLUPs). We also allow the SNP contributions to genetic covariance and heritability to depend on genomic annotations. We conducted simulations with two dichotomous traits having polygenic architecture similar to SZ and BD, using genotypes from 29,330 subjects from the CARTaGENE cohort. Multivariate Lassosum produced polygenic risk scores (PRSs) more strongly correlated with the true genetic risk predictor and had better discrimination power between affected and non-affected subjects than previously published sparse multi-trait (PANPRS) and univariate (Lassosum, sparse LDpred2, and the standard clumping and thresholding) methods in most simulation settings. Application of Multivariate Lassosum to predict SZ, BD, and related psychiatric traits in the Eastern Quebec SZ and BD kindred study revealed associations with every trait stronger than those obtained with univariate sparse PRSs, particularly when heritability and genetic covariance depended on genomic annotations. Multivariate Lassosum thus appears promising to improve prediction of genetically correlated traits with summary statistics for a selected subset of SNPs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Genotipo , Factores de Riesgo , Esquizofrenia/diagnóstico
4.
Ann Clin Transl Neurol ; 9(7): 1050-1058, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35678011

RESUMEN

OBJECTIVE: Microdeletions are associated with different forms of epilepsy but show incomplete penetrance, which is not well understood. We aimed to assess whether unmasked variants or double CNVs could explain incomplete penetrance. METHODS: We analyzed copy number variants (CNVs) in 603 patients with four different subgroups of epilepsy and 945 controls. CNVs were called from genotypes and validated on whole-genome (WGS) or whole-exome sequences (WES). CNV burden difference between patients and controls was obtained by fitting a logistic regression. CNV burden was assessed for small and large (>1 Mb) deletions and duplications and for deletions overlapping different gene sets. RESULTS: Large deletions were enriched in genetic generalized epilepsies (GGE) compared to controls. We also found enrichment of deletions in epilepsy genes and hotspots for GGE. We did not find truncating or functional variants that could have been unmasked by the deletions. We observed a double CNV hit in two patients. One patient also carried a de novo deletion in the 22q11.2 hotspot. INTERPRETATION: We could corroborate previous findings of an enrichment of large microdeletions and deletions in epilepsy genes in GGE. We could also replicate that microdeletions show incomplete penetrance. However, we could not validate the hypothesis of unmasked variants nor the hypothesis of double CNVs to explain the incomplete penetrance. We found a de novo CNV on 22q11.2 that could be of interest. We also observed GGE families carrying a deletion on 15q13.3 hotspot that could be investigated in the Quebec founder population.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Exoma , Humanos , Secuenciación del Exoma
5.
JAMA Neurol ; 79(2): 185-193, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982113

RESUMEN

Importance: Essential tremor (ET) is one of the most common movement disorders, affecting 5% of the general population older than 65 years. Common variants are thought to contribute toward susceptibility to ET, but no variants have been robustly identified. Objective: To identify common genetic factors associated with risk of ET. Design, Setting, and Participants: Case-control genome-wide association study. Inverse-variance meta-analysis was used to combine cohorts. Multicenter samples collected from European populations were collected from January 2010 to September 2019 as part of an ongoing study. Included patients were clinically diagnosed with or reported having ET. Control individuals were not diagnosed with or reported to have ET. Of 485 250 individuals, data for 483 054 passed data quality control and were used. Main Outcomes and Measures: Genotypes of common variants associated with risk of ET. Results: Of the 483 054 individuals included, there were 7177 with ET (3693 [51.46%] female; mean [SD] age, 62.66 [15.12] years), and 475 877 control individuals (253 785 [53.33%] female; mean [SD] age, 56.40 [17.6] years). Five independent genome-wide significant loci and were identified and were associated with approximately 18% of ET heritability. Functional analyses found significant enrichment in the cerebellar hemisphere, cerebellum, and axonogenesis pathways. Genetic correlation (r), which measures the degree of genetic overlap, revealed significant common variant overlap with Parkinson disease (r, 0.28; P = 2.38 × 10-8) and depression (r, 0.12; P = 9.78 × 10-4). A separate fine-mapping of transcriptome-wide association hits identified genes such as BACE2, LRRN2, DHRS13, and LINC00323 in disease-relevant brain regions, such as the cerebellum. Conclusions and Relevance: The results of this genome-wide association study suggest that a portion of ET heritability can be explained by common genetic variation and can help identify new common genetic risk factors for ET.


Asunto(s)
Temblor Esencial/genética , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma
6.
Ann Clin Transl Neurol ; 8(7): 1376-1387, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018700

RESUMEN

OBJECTIVE: Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. METHODS: We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. RESULTS: We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. INTERPRETATION: Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings.


Asunto(s)
Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/genética , Secuenciación del Exoma/métodos , Estudios de Asociación Genética/métodos , Variación Genética/genética , Polimorfismo de Nucleótido Simple/genética , Estudios de Cohortes , Femenino , Humanos , Masculino
7.
Neurol Genet ; 6(3): e416, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32337343

RESUMEN

OBJECTIVE: Polygenic risk scores (PRSs) are used to quantify the cumulative effects of a number of genetic variants, which may individually have a very small effect on susceptibility to a disease; we used PRSs to better understand the genetic contribution to common epilepsy and its subtypes. METHODS: We first replicated previous single associations using 373 unrelated patients. We then calculated PRSs in the same French Canadian patients with epilepsy divided into 7 epilepsy subtypes and population-based controls. We fitted a logistic mixed model to calculate the variance explained by the PRS using pseudo-R2 statistics. RESULTS: We show that the PRS explains more of the variance in idiopathic generalized epilepsy than in patients with nonacquired focal epilepsy. We also demonstrate that the variance explained is different within each epilepsy subtype. CONCLUSIONS: Globally, we support the notion that PRSs provide a reliable measure to rightfully estimate the contribution of genetic factors to the pathophysiologic mechanism of epilepsies, but further studies are needed on PRSs before they can be used clinically.

8.
Epilepsia ; 61(4): 657-666, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32141622

RESUMEN

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Resistencia a Medicamentos/genética , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Variantes Farmacogenómicas/genética , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Lamotrigina/uso terapéutico , Levetiracetam/uso terapéutico , Masculino , Ácido Valproico/uso terapéutico
9.
Parkinsonism Relat Disord ; 64: 262-267, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31085086

RESUMEN

INTRODUCTION: Despite considerable efforts to identify disease-causing and risk factors contributing to essential tremor (ET), no comprehensive assessment of heritable risk has been performed to date. METHODS: We use GREML-LDMS to estimate narrow-sense heritability due to additive effects (h2) and GREMLd to calculate non-additive heritability due to dominance variance (δ2) using data from 1,751 ET cases and 5,311 controls. We evaluate heritability per 10 Mb segments across the genome and assess the impact of Parkinson's disease (PD) misdiagnosis on heritability estimates. We apply genetic risk score (GRS) from PD and restless legs syndrome (RLS) to explore its contribution to ET risk and further assess genetic correlations with 832 traits by Linkage disequilibrium score regression. RESULTS: We estimated ET narrow-sense heritability to be h2 = 75.5% (s.e = ±0.075). In contrast, dominance variance showed insignificant effect on the overall estimates. Heritability split by 10 Mb regions revealed increased estimates at chromosomes 6 and 21. The proportion of genetic variance due to PD misdiagnosed cases was estimated to be 5.33%. PD and RLS GRS were not significantly predictive of ET case-control status. CONCLUSIONS: We show for the first time that ET is a highly heritable condition in which additive common variability plays a prominent role. Chromosomes 6 and 21 may contain causative risk variants influencing susceptibility to ET. Despite overlapping symptomatology, ET does not seem to share genetic etiologies with PD or RLS. Our study suggests that most of ET genetic component is yet to be discovered and future GWAS will reveal additional risk factors contributing to ET.


Asunto(s)
Temblor Esencial/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Anciano , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 6/genética , Estudios de Cohortes , Errores Diagnósticos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Síndrome de las Piernas Inquietas/genética
10.
Clin Chem ; 65(1): 146-152, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602478

RESUMEN

BACKGROUND: The effect of maternal age at conception on various aspects of offspring health is well documented and often discussed. We seldom hear about the paternal age effect on offspring health, although the link is now almost as solid as with maternal age. The causes behind this, however, are drastically different between males and females. CONTENT: In this review article, we will first examine documented physiological changes linked to paternal age effect. We will start with all morphological aspects of the testis that have been shown to be altered with aging. We will then move on to all the parameters of spermatogenesis that are linked with paternal age at conception. The biggest part of this review will focus on genetic changes associated with paternal age effects. Several studies that have established a strong link between paternal age at conception and the rate of de novo mutations will be reviewed. We will next discuss paternal age effects associated with telomere length and try to better understand the seemingly contradictory results. Finally, severe diseases that affect brain functions and normal development have been associated with older paternal age at conception. In this context, we will discuss the cases of autism spectrum disorder and schizophrenia, as well as several childhood cancers. SUMMARY: In many Western civilizations, the age at which parents have their first child has increased substantially in recent decades. It is important to summarize major health issues associated with an increased paternal age at conception to better model public health systems.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Fertilización , Estado de Salud , Edad Paterna , Esquizofrenia/fisiopatología , Aneuploidia , Trastorno del Espectro Autista/genética , Epigénesis Genética , Humanos , Masculino , Mutación , Esquizofrenia/genética , Espermatozoides/citología , Telómero
11.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 335-340, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30378261

RESUMEN

Childhood-onset schizophrenia (COS) is a rare and severe form of schizophrenia, defined as having an onset before the age of 13. The male COS cases have a slightly younger age of onset than female cases. They also present with a higher rate of comorbid developmental disorders. These sex differences are not explained by the frequency of chromosomal abnormalities, and the contribution of other forms of genetic variations remains unestablished. Using a whole-exome sequencing approach, we examined 12 COS trios where the unaffected parents had an affected male child. The sequencing data enabled us to test if the hemizygous variants, transmitted from the unaffected carrying mother, could mediate the phenotype (X-linked recessive inheritance model). Our results revealed that affected children have a significantly greater number of X-linked rare variants than their unaffected fathers. The variants identified in the male probands were mostly found in genes previously linked to other neuropsychiatric diseases like autism, intellectual disability, and epilepsy, including LUZP4, PCDH19, RPS6KA3, and OPHN1. The level of expression of the genes was assessed at different developmental periods in normal brain using the BrainSpan database. This approach revealed that some of them were expressed earlier in males than in females, consistent with the younger age of onset in male COS. In conclusion, this article suggests that X-linked genes might play a role in the pathophysiology of COS. Candidate genes detailed here could explain the higher level of comorbidities and the earlier age of onset observed in a subset of the male COS cases.


Asunto(s)
Esquizofrenia Infantil/genética , Esquizofrenia Infantil/fisiopatología , Adolescente , Adulto , Trastorno Autístico/genética , Encéfalo/metabolismo , Encéfalo/fisiopatología , Niño , Comorbilidad , Epilepsia/genética , Exoma/genética , Familia/psicología , Femenino , Genes Ligados a X/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , Esquizofrenia/genética , Factores Sexuales , Secuenciación del Exoma/métodos
13.
Nucleic Acids Res ; 46(14): 7236-7249, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30137632

RESUMEN

Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition to known enrichments in segmental duplication and near centromeres and telomeres, we also report that CNVs are enriched in specific types of satellite and in some of the most recent families of transposable elements. Finally, using this comprehensive approach, we identify 3455 regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify 347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously associated with disease.


Asunto(s)
Centrómero/genética , Mapeo Cromosómico/métodos , Variaciones en el Número de Copia de ADN , Genoma Humano/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telómero/genética , Genómica/métodos , Humanos , Neoplasias/genética , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma/métodos
14.
PLoS Genet ; 14(4): e1007285, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29649218

RESUMEN

Epilepsy will affect nearly 3% of people at some point during their lifetime. Previous copy number variants (CNVs) studies of epilepsy have used array-based technology and were restricted to the detection of large or exonic events. In contrast, whole-genome sequencing (WGS) has the potential to more comprehensively profile CNVs but existing analytic methods suffer from limited accuracy. We show that this is in part due to the non-uniformity of read coverage, even after intra-sample normalization. To improve on this, we developed PopSV, an algorithm that uses multiple samples to control for technical variation and enables the robust detection of CNVs. Using WGS and PopSV, we performed a comprehensive characterization of CNVs in 198 individuals affected with epilepsy and 301 controls. For both large and small variants, we found an enrichment of rare exonic events in epilepsy patients, especially in genes with predicted loss-of-function intolerance. Notably, this genome-wide survey also revealed an enrichment of rare non-coding CNVs near previously known epilepsy genes. This enrichment was strongest for non-coding CNVs located within 100 Kbp of an epilepsy gene and in regions associated with changes in the gene expression, such as expression QTLs or DNase I hypersensitive sites. Finally, we report on 21 potentially damaging events that could be associated with known or new candidate epilepsy genes. Our results suggest that comprehensive sequence-based profiling of CNVs could help explain a larger fraction of epilepsy cases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia/genética , Estudios de Casos y Controles , Estudios de Cohortes , Humanos , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma
15.
Neurol Genet ; 3(5): e195, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30584593

RESUMEN

OBJECTIVE: To assess the contribution of variants in STK32B, PPARGC1A, and CTNNA3 as essential tremor (ET) predisposing factors following their association in a 2-stage genome-wide association study (GWAS). METHODS: The coding regions of these genes was examined for the presence of rare variants using two approaches: (1) Looking at whole-exome and whole-genome sequencing data of 14 autosomal dominant multiplex ET families. (2) Conducting a targeted massive parallel sequencing to examine the three genes in cohorts of 269 ET cases and 287 control individuals. The cumulative impact of rare variants was assessed using SKAT-O analyses using (1) all variants, (2) only rare variants, and (3) only the rare variants altering the mRNA. RESULTS: Thirty-four variants were identified. No difference emerged regarding the distributions of individual variants (or gene) between cases and controls. CONCLUSION: No rare exonic variants further validated one of these genes as a risk factor for ET. The recent GWAS offers promising avenues, but the genetic heterogeneity of ET is nonetheless challenging for the validation of risk factors, and ultimately larger cohorts of cases should help to overcome this task.

16.
Brain ; 139(Pt 12): 3163-3169, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27797806

RESUMEN

We conducted a genome-wide association study of essential tremor, a common movement disorder characterized mainly by a postural and kinetic tremor of the upper extremities. Twin and family history studies show a high heritability for essential tremor. The molecular genetic determinants of essential tremor are unknown. We included 2807 patients and 6441 controls of European descent in our two-stage genome-wide association study. The 59 most significantly disease-associated markers of the discovery stage were genotyped in the replication stage. After Bonferroni correction two markers, one (rs10937625) located in the serine/threonine kinase STK32B and one (rs17590046) in the transcriptional coactivator PPARGC1A were associated with essential tremor. Three markers (rs12764057, rs10822974, rs7903491) in the cell-adhesion molecule CTNNA3 were significant in the combined analysis of both stages. The expression of STK32B was increased in the cerebellar cortex of patients and expression quantitative trait loci database mining showed association between the protective minor allele of rs10937625 and reduced expression in cerebellar cortex. We found no expression differences related to disease status or marker genotype for the other two genes. Replication of two lead single nucleotide polymorphisms of previous small genome-wide association studies (rs3794087 in SLC1A2, rs9652490 in LINGO1) did not confirm the association with essential tremor.


Asunto(s)
Temblor Esencial/genética , Estudio de Asociación del Genoma Completo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Serina-Treonina Quinasas/genética , alfa Catenina/genética , Humanos , Polimorfismo de Nucleótido Simple
17.
PLoS One ; 11(10): e0164212, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27723766

RESUMEN

De novo mutations (DNM) are an important source of rare variants and are increasingly being linked to the development of many diseases. Recently, the paternal age effect has been the focus of a number of studies that attempt to explain the observation that increasing paternal age increases the risk for a number of diseases. Using disease-free familial quartets we show that there is a strong positive correlation between paternal age and germline DNM in healthy subjects. We also observed that germline CNVs do not follow the same trend, suggesting a different mechanism. Finally, we observed that DNM were not evenly distributed across the genome, which adds support to the existence of DNM hotspots.


Asunto(s)
Mutación de Línea Germinal , Edad Paterna , Adulto , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Variaciones en el Número de Copia de ADN , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Adulto Joven
18.
Neurobiol Aging ; 43: 180.e7-180.e13, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27131830

RESUMEN

The MC1R gene, suggested to be involved in Parkinson disease (PD) and melanoma, was sequenced in PD patients (n = 539) and controls (n = 265) from New York, and PD patients (n = 551), rapid eye movement sleep behavior disorder (RBD) patients (n = 351), and controls (n = 956) of European ancestry. Sixty-eight MC1R variants were identified, including 7 common variants with frequency > 0.01. None of the common variants was associated with PD or RBD in the different regression models. In a meta-analysis with fixed-effect model, the p.R160W variant was associated with an increased risk for PD (odds ratio = 1.22, 95% confidence interval = 1.02-1.47, p = 0.03) but with significant heterogeneity (p = 0.048). Removing one study that introduced the heterogeneity resulted in nonsignificant association (odds ratio = 1.11, 95% confidence interval, 0.92-1.35, p = 0.27, heterogeneity p = 0.57). Rare variants had similar frequencies in patients and controls (10.54% and 10.15%, respectively, p = 0.75), and no cumulative effect of carrying more than one MC1R variant was found. The present study does not support a role for the MC1R p.R160W and other variants in susceptibility for PD or RBD.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Melanoma/genética , Enfermedad de Parkinson/genética , Trastorno de la Conducta del Sueño REM/genética , Receptor de Melanocortina Tipo 1/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Eur J Hum Genet ; 24(6): 944-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26508570

RESUMEN

Childhood-onset schizophrenia (COS), defined by the onset of illness before age 13 years, is a rare severe neurodevelopmental disorder of unknown etiology. Recently, sequencing studies have identified rare, potentially causative de novo variants in sporadic cases of adult-onset schizophrenia and autism. In this study, we performed exome sequencing of 17 COS trios in order to test whether de novo variants could contribute to this disease. We identified 20 de novo variants in 17 COS probands, which is consistent with the de novo mutation rate reported in the adult form of the disease. Interestingly, the missense de novo variants in COS have a high likelihood for pathogenicity and were enriched for genes that are less tolerant to variants. Among the genes found disrupted in our study, SEZ6, RYR2, GPR153, GTF2IRD1, TTBK1 and ITGA6 have been previously linked to neuronal function or to psychiatric disorders, and thus may be considered as COS candidate genes.


Asunto(s)
Mutación Missense , Esquizofrenia Infantil/genética , Niño , Exoma , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Integrina alfa6/genética , Masculino , Proteínas Musculares/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores Acoplados a Proteínas G/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Transactivadores/genética
20.
PLoS One ; 10(6): e0128988, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039597

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is a very heterogeneous disease that affects approximately 1% of the general population. Recently, the genetic complexity thought to underlie this condition was further supported by three independent studies that identified an increased number of damaging de novo mutations DNM in different SCZ probands. While these three reports support the implication of DNM in the pathogenesis of SCZ, the absence of overlap in the genes identified suggests that the number of genes involved in SCZ is likely to be very large; a notion that has been supported by the moderate success of Genome-Wide Association Studies (GWAS). METHODS: To further examine the genetic heterogeneity of this disease, we resequenced 62 genes that were found to have a DNM in SCZ patients, and 40 genes that encode for proteins known to interact with the products of the genes with DNM, in a cohort of 235 SCZ cases and 233 controls. RESULTS: We found an enrichment of private nonsense mutations amongst schizophrenia patients. Using a kernel association method, we were able to assess for association for different sets. Although our power of detection was limited, we observed an increased mutation burden in the genes that have DNM.


Asunto(s)
Proteína p300 Asociada a E1A/genética , Predisposición Genética a la Enfermedad , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Adulto , Algoritmos , Estudios de Casos y Controles , Femenino , Expresión Génica , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Tasa de Mutación , Esquizofrenia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...