Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol J ; 21(1): 76, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553727

RESUMEN

BACKGROUND: RNA helicases are emerging as key factors regulating host-virus interactions. The DEAD-box ATP-dependent RNA helicase DDX5, which plays an important role in many aspects of cellular RNA biology, was also found to either promote or inhibit viral replication upon infection with several RNA viruses. Here, our aim is to examine the impact of DDX5 on Sindbis virus (SINV) infection. METHODS: We analysed the interaction between DDX5 and the viral RNA using imaging and RNA-immunoprecipitation approaches. The interactome of DDX5 in mock- and SINV-infected cells was determined by mass spectrometry. We validated the interaction between DDX17 and the viral capsid by co- immunoprecipitation in the presence or absence of an RNase treatment. We determined the subcellular localization of DDX5, its cofactor DDX17 and the viral capsid protein by co-immunofluorescence. Finally, we investigated the impact of DDX5 depletion and overexpression on SINV infection at the viral protein, RNA and infectious particle accumulation level. The contribution of DDX17 was also tested by knockdown experiments. RESULTS: In this study we demonstrate that DDX5 interacts with the SINV RNA during infection. Furthermore, the proteomic analysis of the DDX5 interactome in mock and SINV-infected HCT116 cells identified new cellular and viral partners and confirmed the interaction between DDX5 and DDX17. Both DDX5 and DDX17 re-localize from the nucleus to the cytoplasm upon SINV infection and interact with the viral capsid protein. We also show that DDX5 depletion negatively impacts the viral replication cycle, while its overexpression has a pro-viral effect. Finally, we observed that DDX17 depletion reduces SINV infection, an effect which is even more pronounced in a DDX5-depleted background, suggesting a synergistic pro-viral effect of the DDX5 and DDX17 proteins on SINV. CONCLUSIONS: These results not only shed light on DDX5 as a novel and important host factor to the SINV life cycle, but also expand our understanding of the roles played by DDX5 and DDX17 as regulators of viral infections.


Asunto(s)
Infecciones por Alphavirus , Proteínas de la Cápside , Humanos , Proteómica , Replicación Viral , ARN , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Virus Sindbis/metabolismo
2.
RNA ; 29(3): 361-375, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617674

RESUMEN

Viruses are obligate intracellular parasites, which depend on the host cellular machineries to replicate their genome and complete their infectious cycle. Long double-stranded (ds)RNA is a common viral by-product originating during RNA virus replication and is universally sensed as a danger signal to trigger the antiviral response. As a result, viruses hide dsRNA intermediates into viral replication factories and have evolved strategies to hijack cellular proteins for their benefit. The characterization of the host factors associated with viral dsRNA and involved in viral replication remains a major challenge to develop new antiviral drugs against RNA viruses. Here, we performed anti-dsRNA immunoprecipitation followed by mass spectrometry analysis to fully characterize the dsRNA interactome in Sindbis virus (SINV) infected human cells. Among the identified proteins, we characterized SFPQ (splicing factor, proline-glutamine rich) as a new dsRNA-associated proviral factor upon SINV infection. We showed that SFPQ depletion reduces SINV infection in human HCT116 and SK-N-BE(2) cells, suggesting that SFPQ enhances viral production. We demonstrated that the cytoplasmic fraction of SFPQ partially colocalizes with dsRNA upon SINV infection. In agreement, we proved by RNA-IP that SFPQ can bind dsRNA and viral RNA. Furthermore, we showed that overexpression of a wild-type, but not an RNA binding mutant SFPQ, increased viral infection, suggesting that RNA binding is essential for its positive effect on the virus. Overall, this study provides the community with a compendium of dsRNA-associated factors during viral infection and identifies SFPQ as a new proviral dsRNA binding protein.


Asunto(s)
Virus ARN , ARN Bicatenario , Humanos , ARN Bicatenario/genética , Proteómica , Virus Sindbis/genética , Virus Sindbis/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus ARN/genética , Replicación Viral/genética
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35031565

RESUMEN

CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTß) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTßR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTßR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTßR and RANK with implications for the immune response.


Asunto(s)
Ganglios Linfáticos/inmunología , Receptor beta de Linfotoxina/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transducción de Señal , Bazo/inmunología , Linfocitos B/inmunología , Ligando RANK/metabolismo , Células del Estroma/metabolismo
4.
PLoS Pathog ; 17(5): e1009549, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33984068

RESUMEN

The antiviral innate immune response mainly involves type I interferon (IFN) in mammalian cells. The contribution of the RNA silencing machinery remains to be established, but several recent studies indicate that the ribonuclease DICER can generate viral siRNAs in specific conditions. It has also been proposed that type I IFN and RNA silencing could be mutually exclusive antiviral responses. In order to decipher the implication of DICER during infection of human cells with alphaviruses such as the Sindbis virus and Semliki forest virus, we determined its interactome by proteomics analysis. We show that DICER specifically interacts with several double-stranded RNA binding proteins and RNA helicases during viral infection. In particular, proteins such as DHX9, ADAR-1 and the protein kinase RNA-activated (PKR) are enriched with DICER in virus-infected cells. We demonstrate that the helicase domain of DICER is essential for this interaction and that its deletion confers antiviral properties to this protein in an RNAi-independent, PKR-dependent, manner.


Asunto(s)
Infecciones por Alphavirus/tratamiento farmacológico , Antivirales/farmacología , ARN Helicasas DEAD-box/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Ribonucleasa III/metabolismo , Virus de los Bosques Semliki/efectos de los fármacos , Replicación Viral , eIF-2 Quinasa/metabolismo , Infecciones por Alphavirus/metabolismo , Infecciones por Alphavirus/patología , ARN Helicasas DEAD-box/genética , Células HEK293 , Humanos , Interferón Tipo I/farmacología , Ribonucleasa III/genética , eIF-2 Quinasa/genética
5.
Semin Cell Dev Biol ; 111: 86-100, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32847707

RESUMEN

As obligate intracellular parasites with limited coding capacity, RNA viruses rely on host cells to complete their multiplication cycle. Viral RNAs (vRNAs) are central to infection. They carry all the necessary information for a virus to synthesize its proteins, replicate and spread and could also play essential non-coding roles. Regardless of its origin or tropism, vRNA has by definition evolved in the presence of host RNA Binding Proteins (RBPs), which resulted in intricate and complicated interactions with these factors. While on one hand some host RBPs recognize vRNA as non-self and mobilize host antiviral defenses, vRNA must also co-opt other host RBPs to promote viral infection. Focusing on pathogenic RNA viruses, we will review important scenarios of RBP-vRNA interactions during which host RBPs recognize, modify or degrade vRNAs. We will then focus on how vRNA hijacks the largest ribonucleoprotein complex (RNP) in the cell, the ribosome, to selectively promote the synthesis of its proteins. We will finally reflect on how novel technologies are helping in deepening our understanding of vRNA-host RBPs interactions, which can be ultimately leveraged to combat everlasting viral threats.


Asunto(s)
Virus ARN/genética , ARN Mensajero/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas Virales/genética , Virosis/genética , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Unión Proteica , Biosíntesis de Proteínas , Virus ARN/crecimiento & desarrollo , Virus ARN/patogenicidad , ARN Mensajero/inmunología , ARN Viral/inmunología , Proteínas de Unión al ARN/inmunología , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Ensamble de Virus/genética , Virosis/inmunología , Virosis/patología , Virosis/virología
6.
mSphere ; 5(6)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177215

RESUMEN

Double-stranded RNA (dsRNA) is the hallmark of many viral infections. dsRNA is produced either by RNA viruses during replication or by DNA viruses upon convergent transcription. Synthetic dsRNA is also able to mimic viral-induced activation of innate immune response and cell death. In this study, we employed a genome-wide CRISPR-Cas9 loss-of-function screen based on cell survival in order to identify genes implicated in the host response to dsRNA. By challenging HCT116 human cells with either synthetic dsRNA or Sindbis virus (SINV), we identified the heparan sulfate (HS) pathway as a crucial factor for dsRNA entry, and we validated SINV dependency on HS. Interestingly, we uncovered a novel role for COG4, a component of the conserved oligomeric Golgi (COG) complex, as a factor involved in cell survival to both dsRNA and SINV in human cells. We showed that COG4 knockout led to a decrease of extracellular HS that specifically affected dsRNA transfection efficiency and reduced viral production, which explains the increased cell survival of these mutants.IMPORTANCE When facing a viral infection, the organism has to put in place a number of defense mechanisms in order to clear the pathogen from the cell. At the early phase of this preparation for fighting against the invader, the innate immune response is triggered by the sensing of danger signals. Among those molecular cues, double-stranded RNA (dsRNA) is a very potent inducer of different reactions at the cellular level that can ultimately lead to cell death. Using a genome-wide screening approach, we set to identify genes involved in dsRNA entry, sensing, and apoptosis induction in human cells. This allowed us to determine that the heparan sulfate pathway and the conserved oligomeric Golgi complex are key determinants allowing entry of both dsRNA and viral nucleic acid leading to cell death.


Asunto(s)
Virus ADN/metabolismo , Virus ARN/metabolismo , ARN Bicatenario/metabolismo , Virosis/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Aparato de Golgi/metabolismo , Células HCT116 , Heparitina Sulfato/metabolismo , Humanos , Inmunidad Innata , Virosis/patología
7.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32102877

RESUMEN

MicroRNAs (miRNAs) are small regulatory RNAs which act by modulating the expression of target genes. In addition to their role in maintaining essential physiological functions in the cell, miRNAs can also regulate viral infections. They can do so directly by targeting RNAs of viral origin or indirectly by targeting host mRNAs, and this can result in a positive or negative outcome for the virus. Here, we performed a fluorescence-based miRNA genome-wide screen in order to identify cellular miRNAs involved in the regulation of arbovirus infection in human cells. We identified 16 miRNAs showing a positive effect on Sindbis virus (SINV) expressing green fluorescent protein (GFP), among which were a number of neuron-specific ones such as miR-124. We confirmed that overexpression of miR-124 increases both SINV structural protein translation and viral production and that this effect is mediated by its seed sequence. We further demonstrated that the SINV genome possesses a binding site for miR-124. Both inhibition of miR-124 and silent mutations to disrupt this binding site in the viral RNA abolished positive regulation. We also proved that miR-124 inhibition reduces SINV infection in human differentiated neuronal cells. Finally, we showed that the proviral effect of miR-124 is conserved in other alphaviruses, as its inhibition reduces chikungunya virus (CHIKV) production in human cells. Altogether, our work expands the panel of positive regulation of the viral cycle by direct binding of host miRNAs to the viral RNA and provides new insights into the role of cellular miRNAs as regulators of alphavirus infection.IMPORTANCE Arthropod-borne (arbo) viruses are part of a class of pathogens that are transmitted to their final hosts by insects. Because of climate change, the habitat of some of these insects, such as mosquitoes, is shifting, thereby facilitating the emergence of viral epidemics. Among the pathologies associated with arbovirus infection, neurological diseases such as meningitis and encephalitis represent a significant health burden. Using a genome-wide miRNA screen, we identified neuronal miR-124 as a positive regulator of the Sindbis and chikungunya alphaviruses. We also showed that this effect was in part direct, thereby opening novel avenues to treat alphavirus infections.


Asunto(s)
Infecciones por Alphavirus/genética , Alphavirus/genética , MicroARNs/genética , Alphavirus/metabolismo , Infecciones por Alphavirus/diagnóstico , Línea Celular , Fiebre Chikungunya/genética , Virus Chikungunya/genética , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos , Interacciones Huésped-Patógeno , Humanos , MicroARNs/metabolismo , Neuronas/metabolismo , ARN Viral/metabolismo , Virus Sindbis/genética , Replicación Viral
8.
Med Sci (Paris) ; 35(8-9): 667-673, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31532379

RESUMEN

Viruses are obligatory intracellular parasites that rely on a wide range of cellular factors to successfully accomplish their infectious cycle. Among those, micro (mi)RNAs have recently emerged as important modulators of viral infections. These small regulatory molecules act as repressors of gene expression. During infection, miRNAs can function by targeting either cellular or viral RNAs. In this review, we will recapitulate what has been reported to date on this interplay between cellular miRNAs and viruses and the effect on the infection. Furthermore, we will briefly discuss the possibilities of interfering with the infection through the modulation of this pathway to develop novel antiviral therapies.


TITLE: Importance des microARN cellulaires dans la régulation des infections virales. ABSTRACT: Parasites intracellulaires obligatoires, les virus dépendent d'un grand nombre de facteurs cellulaires pour accomplir leur cycle de multiplication. Parmi ceux-ci, les microARN (miARN) ont récemment émergé comme d'importants modulateurs des infections virales. Ces petites molécules régulatrices agissent comme des répresseurs de l'expression des gènes. Au cours de l'infection, ils peuvent agir sur des ARN cibles d'origine cellulaire mais aussi virale. Cette synthèse fait le point sur les différents mécanismes, directs et indirects, impliquant ces miARN dans la régulation des virus et aborde les possibles applications thérapeutiques qui peuvent en découler.


Asunto(s)
Interacciones Huésped-Patógeno/genética , MicroARNs/fisiología , Virosis/genética , Virosis/inmunología , Animales , Antivirales/uso terapéutico , Interacciones Huésped-Patógeno/inmunología , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Virosis/terapia , Replicación Viral/genética , Virus/genética , Virus/inmunología
9.
Front Genet ; 9: 439, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333857

RESUMEN

Every living organism has to constantly face threats from the environment and deal with a large number of pathogens against which it has to defend itself to survive. Among those, viruses represent a large class of obligatory intracellular parasites, which rely on their host machinery to multiply and propagate. As a result, viruses and their hosts have engaged in an ever-evolving arms race to be able to maintain their existence. The role played by micro (mi)RNAs in this ongoing battle has been extensively studied in the past 15 years and will be the subject of this review article. We will mainly focus on cellular miRNAs and their implication during viral infection in mammals. Thus, we will describe current techniques that can be used to identify miRNAs involved in the modulation of viral infection and to characterize their targets and mode of action. We will also present different reported examples of miRNA-mediated regulation of viruses, which can have a positive outcome either for the host or for the virus. In addition, the mode of action is also of a dual nature, depending on the target of the miRNA. Indeed, the regulatory small RNA can either directly guide an Argonaute protein on a viral transcript, or target a cellular mRNA involved in the host antiviral response. We will then see whether and how viruses respond to miRNA-mediated targeting. Finally, we will discuss how our knowledge of viral targeting by miRNA can be exploited for developing new antiviral therapeutic approaches.

10.
Nucleic Acids Res ; 45(8): 4881-4892, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28115625

RESUMEN

The piRNA pathway is of key importance in controlling transposable elements in most animal species. In the vector mosquito Aedes aegypti, the presence of eight PIWI proteins and the accumulation of viral piRNAs upon arbovirus infection suggest additional functions of the piRNA pathway beyond genome defense. To better understand the regulatory potential of this pathway, we analyzed in detail host-derived piRNAs in A. aegypti Aag2 cells. We show that a large repertoire of protein-coding genes and non-retroviral integrated RNA virus elements are processed into genic piRNAs by different combinations of PIWI proteins. Among these, we identify a class of genes that produces piRNAs from coding sequences in an Ago3- and Piwi5-dependent fashion. We demonstrate that the replication-dependent histone gene family is a genic source of ping-pong dependent piRNAs and that histone-derived piRNAs are dynamically expressed throughout the cell cycle, suggesting a role for the piRNA pathway in the regulation of histone gene expression. Moreover, our results establish the Aag2 cell line as an accessible experimental model to study gene-derived piRNAs.


Asunto(s)
Aedes/genética , Proteínas Argonautas/genética , Histonas/genética , ARN Interferente Pequeño/genética , Animales , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , ARN Interferente Pequeño/biosíntesis
11.
Nucleic Acids Res ; 43(13): 6545-56, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26068474

RESUMEN

The PIWI-interacting RNA (piRNA) pathway is essential for transposon silencing in many model organisms. Its remarkable efficiency relies on a sophisticated amplification mechanism known as the ping-pong loop. In Alphavirus-infected Aedes mosquitoes, piRNAs with sequence features that suggest ping-pong-dependent biogenesis are produced from viral RNA. The PIWI family in Aedes mosquitoes is expanded when compared to other model organisms, raising the possibility that individual PIWI proteins have functionally diversified in these insects. Here, we show that Piwi5 and Ago3, but none of the other PIWI family members, are essential for piRNA biogenesis from Sindbis virus RNA in infected Aedes aegypti cells. In contrast, the production of piRNAs from transposons relies on a more versatile set of PIWI proteins, some of which do not contribute to viral piRNA biogenesis. These results indicate that functional specialization allows distinct mosquito PIWI proteins to process RNA from different endogenous and exogenous sources.


Asunto(s)
Arbovirus/genética , Proteínas Argonautas/fisiología , Elementos Transponibles de ADN , Proteínas de Insectos/fisiología , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Virus Sindbis/genética , Aedes/metabolismo , Aedes/virología , Animales , Proteínas Argonautas/antagonistas & inhibidores , Línea Celular , Proteínas de Insectos/antagonistas & inhibidores , ARN Interferente Pequeño/genética , ARN Viral/genética
12.
Sci Rep ; 5: 10693, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26024431

RESUMEN

In plants and invertebrates RNA silencing is a major defense mechanism against virus infections. The first event in RNA silencing is dicing of long double stranded RNAs into small interfering RNAs (siRNAs). The Dicer proteins involved in this process are phylogenetically conserved and have the same domain organization. Accordingly, the production of viral derived siRNAs has also been observed in the mouse, but only in restricted cell types. To gain insight on this restriction, we compare the dicing activity of human Dicer and fly Dicer-2 in the context of Sindbis virus (SINV) infection. Expression of human Dicer in flies inefficiently rescues the production of viral siRNAs but confers some protection against SINV. Conversely, expression of Dicer-2 in human cells allows the production of viral 21 nt small RNAs. However, this does not confer resistance to viral infection, but on the contrary results in stronger accumulation of viral RNA. We further show that Dicer-2 expression in human cells perturbs interferon (IFN) signaling pathways and antagonizes protein kinase R (PKR)-mediated antiviral immunity. Overall, our data suggest that a functional incompatibility between the Dicer and IFN pathways explains the predominance of the IFN response in mammalian somatic cells.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Infecciones por Alphavirus/virología , Ribonucleasa III/metabolismo , Virus Sindbis/genética , Infecciones por Alphavirus/genética , Animales , Animales Modificados Genéticamente , Línea Celular , Drosophila , Expresión Génica , Silenciador del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interferones/metabolismo , Interferencia de ARN , ARN Pequeño no Traducido/genética , Ribonucleasa III/genética , Transducción de Señal
13.
Nat Biotechnol ; 33(5): 549-554, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25798937

RESUMEN

Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer. Cell entry of HCV and other pathogens is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model, we show that a monoclonal antibody specific for the TJ protein claudin-1 (ref. 7) eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection by means of host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Claudina-1/inmunología , Hepatitis C/terapia , Cirrosis Hepática/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/inmunología , Claudina-1/uso terapéutico , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatitis C/virología , Hepatocitos/inmunología , Humanos , Cirrosis Hepática/terapia , Cirrosis Hepática/virología , Ratones
14.
mBio ; 4(6): e00698-13, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24255120

RESUMEN

UNLABELLED: Small RNAs play a critical role in host-pathogen interaction. Indeed, small RNA-mediated silencing or RNA interference (RNAi) is one of the earliest forms of antiviral immunity. Although it represents the main defense system against viruses in many organisms, the antiviral role of RNAi has not been clearly proven in higher vertebrates. However, it is well established that their response to viral infection relies on the recognition of viral RNAs by host pattern recognition receptors (PRRs) to trigger activation of the interferon pathway. In the present work, we report the existence of a novel small noncoding RNA population produced in mammalian cells upon RNA virus infection. Using Sindbis virus (SINV) as a prototypic arbovirus model, we profiled the small RNA population of infected cells in both human and African green monkey cell lines. Here, we provide evidence for the presence of discrete small RNAs of viral origin that are not associated with the RNA-induced silencing complex (RISC), that are highly expressed and detected by Northern blot analysis, and that accumulate as 21- to 28-nucleotide (nt) species during infection. We report that the cellular antiviral endoribonuclease RNase L cleaves the viral genome, producing in turn the small RNAs. Surprisingly, we uncovered the presence of a modification on the 3'-end nucleotide of SINV-derived viral small RNAs (SvsRNAs) that might be at the origin of their stability. Altogether, our findings show that stable modified small viral RNAs could represent a novel way to modulate host-virus interaction upon SINV infection. IMPORTANCE: In a continuous arms race, viruses have to deal with host antiviral responses in order to successfully establish an infection. In mammalian cells, the host defense mechanism relies on the recognition of viral RNAs, resulting in the activation of type I interferons (IFNs). In turn, the expression of many interferon-stimulated genes (ISGs) is induced to inhibit viral replication. Here we report that the cytoplasmic, interferon-induced, cellular endoribonuclease RNase L is involved in the accumulation of a novel small RNA population of viral origin. These small RNAs are produced upon SINV infection of mammalian cells and are stabilized by a 3'-end modification. Altogether, our findings indicate that in our system RNA silencing is not active against Sindbis virus (SINV) and might open the way to a better understanding of the antiviral response mediated by a novel class of small RNAs.


Asunto(s)
Endorribonucleasas/metabolismo , Interacciones Huésped-Patógeno , ARN Pequeño no Traducido/metabolismo , ARN Viral/metabolismo , Virus Sindbis/fisiología , Animales , Línea Celular , Chlorocebus aethiops , Perfilación de la Expresión Génica , Humanos , Procesamiento Postranscripcional del ARN
15.
J Virol ; 86(21): 11919-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22896615

RESUMEN

Hepatitis C virus (HCV) is a human hepatotropic virus, but the relevant host factors restricting HCV infection to hepatocytes are only partially understood. We demonstrate that exogenous expression of defined host factors reconstituted the entire HCV life cycle in human nonhepatic 293T cells. This study shows robust HCV entry, RNA replication, and production of infectious virus in human nonhepatic cells and highlights key host factors required for liver tropism of HCV.


Asunto(s)
Hepacivirus/fisiología , Tropismo Viral , Línea Celular , Humanos , Internalización del Virus , Liberación del Virus , Replicación Viral
16.
Cell Metab ; 12(4): 341-351, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20727829

RESUMEN

In Duchenne muscular dystrophy (DMD) the absence of dystrophin at the sarcolemma delocalizes and downregulates nitric oxide synthase (nNOS); this alters S-nitrosylation of HDAC2 and its chromatin association. We show that the differential HDAC2 nitrosylation state in Duchenne versus wild-type conditions deregulates the expression of a specific subset of microRNA genes. Several circuitries controlled by the identified microRNAs, such as the one linking miR-1 to the G6PD enzyme and the redox state of cell, or miR-29 to extracellular proteins and the fibrotic process, explain some of the DMD pathogenetic traits. We also show that, at variance with other myomiRs, miR-206 escapes from the dystrophin-nNOS control being produced in activated satellite cells before dystrophin expression; in these cells, it contributes to muscle regeneration through repression of the satellite specific factor, Pax7. We conclude that the pathway activated by dystrophin/nNOS controls several important circuitries increasing the robustness of the muscle differentiation program.


Asunto(s)
Distrofina/metabolismo , MicroARNs/fisiología , Distrofia Muscular Animal/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Distrofina/fisiología , Regulación de la Expresión Génica , Histona Desacetilasa 2/metabolismo , Ratones , Ratones Endogámicos mdx , MicroARNs/genética , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/fisiología
17.
Mol Cell Biol ; 29(20): 5632-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19667074

RESUMEN

The first step in microRNA (miRNA) biogenesis occurs in the nucleus and is mediated by the Microprocessor complex containing the RNase III-like enzyme Drosha and its cofactor DGCR8. Here we show that the 5'-->3' exonuclease Xrn2 associates with independently transcribed miRNAs and, in combination with Drosha processing, attenuates transcription in downstream regions. We suggest that, after Drosha cleavage, a torpedo-like mechanism acts on nascent long precursor miRNAs, whereby Xrn2 exonuclease degrades the RNA polymerase II-associated transcripts inducing its release from the template. While involved in primary transcript termination, this attenuation effect does not restrict clustered miRNA expression, which, in the majority of cases, is separated by short spacers. We also show that transcripts originating from a miRNA promoter are retained on the chromatin template and are more efficiently processed than those produced from mRNA or snRNA Pol II-dependent promoters. These data imply that coupling between transcription and processing promotes efficient expression of independently transcribed miRNAs.


Asunto(s)
MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleasa III/metabolismo , Línea Celular Tumoral , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HeLa , Humanos , MicroARNs/genética , Regiones Promotoras Genéticas/fisiología , Proteínas/genética , Proteínas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN , Ribonucleasa III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...