Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 923: 171174, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402972

RESUMEN

Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon­oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.


Asunto(s)
Picea , Tracheophyta , Humanos , Sequías , Ecosistema , Árboles , Isótopos de Carbono/análisis , Carbono , Agua , Isótopos de Oxígeno
2.
Nat Commun ; 14(1): 6901, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903759

RESUMEN

Rising atmospheric vapour pressure deficit (VPD) associated with climate change affects boreal forest growth via stomatal closure and soil dryness. However, the relationship between VPD and forest growth depends on the climatic context. Here we assess Canadian boreal forest responses to VPD changes from 1951-2018 using a well-replicated tree-growth increment network with approximately 5,000 species-site combinations. Of the 3,559 successful growth models, we observed a relationship between growth and concurrent summer VPD in one-third of the species-site combinations, and between growth and prior summer VPD in almost half of those combinations. The relationship between previous year VPD and current year growth was almost exclusively negative, while current year VPD also tended to reduce growth. Tree species, age, annual temperature, and soil moisture primarily determined tree VPD responses. Younger trees and species like white spruce and Douglas fir exhibited higher VPD sensitivity, as did areas with high annual temperature and low soil moisture. Since 1951, summer VPD increases in Canada have paralleled tree growth decreases, particularly in spruce species. Accelerating atmospheric dryness in the decades ahead will impair carbon storage and societal-economic services.


Asunto(s)
Picea , Árboles , Taiga , Canadá , Bosques , Suelo
3.
iScience ; 26(6): 106807, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37255655

RESUMEN

Dry and warm conditions have exacerbated the occurrence of large and severe wildfires over the past decade in Canada's Northwest Territories (NT). Although temperatures are expected to increase during the 21st century, we lack understanding of how the climate-vegetation-fire nexus might respond. We used a dynamic global vegetation model to project annual burn rates, as well as tree species composition and biomass in the NT during the 21st century using the IPCC's climate scenarios. Burn rates will decrease in most of the NT by the mid-21st century, concomitant with biomass loss of fire-prone evergreen needleleaf tree species, and biomass increase of broadleaf tree species. The southeastern NT is projected to experience enhanced fire activity by the late 21st century according to scenario RCP4.5, supported by a higher production of flammable evergreen needleleaf biomass. The results underlie the potential for major impacts of climate change on the NT's terrestrial ecosystems.

4.
Proc Natl Acad Sci U S A ; 119(18): e2117464119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476522

RESUMEN

As northern latitudes experience rapid winter warming, there is an urgent need to assess the effect of varying winter conditions on tree growth and forest carbon sequestration potential. We examined tree growth responses to variability in cold-season (November­April) frequency of freeze days (FFD) over 1951 to 2018 using tree-ring data from 35,217 trees and 57 species at 4,375 sites distributed across Canada. We found that annual radial growth responses to FFD varied by species, with some commonalities across genera and clades. The growth of gymnosperms with late spring leaf-out strategies was negatively related to FFD; years with high FFD were most detrimental to the annual growth of Pinus banksiana, Pinus contorta, Larix lyalli, Abies amabilis, and Abies lasiocarpa. In contrast, the growth of angiosperms with early leaf-out strategies, namely, Populus tremuloides and Betula papyrifera, was better in the coldest years, and gymnosperms with intermediate leaf-out timing, such as widespread Picea mariana and Picea glauca, had no consistent relationship to FFD. Tree growth responses to FFD were further modulated by tree size, tree age, regional climate (i.e., mean cold-season temperature), and local site conditions. Overall, our results suggest that moderately warming winters may temporarily improve the growth of widespread pines and some high-elevation conifers in western Canada, whereas warming winters may be detrimental to the growth of widespread boreal angiosperms. Our findings also highlight the value of using species-specific climate-growth relationships to refine predictions of forest carbon dynamics.


Asunto(s)
Bosques , Árboles , Secuestro de Carbono , Cambio Climático , Estaciones del Año
5.
Ecol Evol ; 12(3): e8656, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342593

RESUMEN

Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate-driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co-occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species-specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non-host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.

6.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35241971

RESUMEN

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

7.
Glob Chang Biol ; 28(5): 1903-1918, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873797

RESUMEN

The boreal forest represents the terrestrial biome most heavily affected by climate change. However, no consensus exists regarding the impacts of these changes on the growth of tree species therein. Moreover, assessments of young tree responses in metrics transposable to forest management remain scarce. Here, we assessed the impacts of climate change on black spruce (Picea mariana [Miller] BSP) and jack pine (Pinus banksiana Lambert) growth, two dominant tree species in boreal forests of North America. Starting with a retrospective analysis including data from 2591 black spruces and 890 jack pines, we forecasted trends in 30-year height growth at the transitions from closed to open boreal coniferous forests in Québec, Canada. We considered three variables: (1) height growth, rarely used, but better-reflecting site potential than other growth proxies, (2) climate normals corresponding to the growth period of each stem, and (3) site type (as a function of texture, stoniness, and drainage), which can modify the effects of climate on tree growth. We found a positive effect of vapor pressure deficit on the growth of both species, although the effect on black spruce leveled off. For black spruce, temperatures had a positive effect on the height at 30 years, which was attenuated when and where climatic conditions became drier. Conversely, drought had a positive effect on height under cold conditions and a negative effect under warm conditions. Spruce growth was also better on mesic than on rocky and sub-hydric sites. For portions of the study areas with projected future climate within the calibration range, median height-change varied from 10 to 31% for black spruce and from 5 to 31% for jack pine, depending on the period and climate scenario. As projected increases are relatively small, they may not be sufficient to compensate for potential increases in future disturbances like forest fires.


Asunto(s)
Picea , Pinus , Cambio Climático , Picea/fisiología , Pinus/fisiología , Estudios Retrospectivos , Taiga , Árboles
8.
Glob Chang Biol ; 28(5): 1884-1902, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34854165

RESUMEN

Many modelling approaches have been developed to project climate change impacts on forests. By analysing 'comparable' yet distinct variables (e.g. productivity, growth, dominance, biomass, etc.) through different structures, parameterizations and assumptions, models can yield different outcomes to rather similar initial questions. This variability can lead to some confusion for forest managers when developing strategies to adapt forest management to climate change. In this study, we standardized results from seven different models (Habitat suitability, trGam, StandLEAP, Quebec Landscape Dynamics, PICUS, LANDIS-II and LPJ-LMfire) to provide a simple and comprehensive assessment of the uncertainty and consensus in future performance (decline, status quo, improvement) for six tree species in Quebec under two radiative forcing scenarios (RCP 4.5 and RCP 8.5). Despite a large diversity of model types, we found a high level of agreement (73.1%) in projected species' performance across species, regions, scenarios and time periods. Low agreements in model outcomes resulted from small dissensions among models. Model agreement was much higher for cold-tolerant species (up to 99.9%), especially in southernmost forest regions and under RCP 8.5, indicating that these species are especially sensitive to increased climate forcing in the southern part of their distribution range. Lower agreement was found for thermophilous species (sugar maple, yellow birch) in boreal regions under RCP 8.5 mostly as a result of the way the different models are handling natural disturbances (e.g. wildfires) and lags in the response of populations (forest inertia or migration capability) to climate change. Agreement was slightly higher under high anthropogenic climate forcing, suggesting that important thresholds in species-specific performance might be crossed if radiative forcing reach values as high as those projected under RCP 8.5. We expect that strong agreement among models despite their different assumptions, predictors and structure should inspire the development of forest management strategies to be better adapted to climate change.


Asunto(s)
Cambio Climático , Árboles , Ecosistema , Bosques , Quebec , Árboles/fisiología
9.
Sci Total Environ ; 794: 148514, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218146

RESUMEN

An increase in frequency, intensity and duration of drought events affects forested ecosystems. Trees react to these changes by adjusting stomatal conductance to maximize the trade-off between carbon gains and water losses. A better understanding of the consequences of these drought-induced physiological adjustments for tree growth could help inferring future productivity potentials of boreal forests. Here, we used samples from a forest inventory network in Canada where a decline in growth rates of black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) occurred in 1988-1992, an exceptionally dry period, to verify if this growth decline resulted from physiological adjustments of trees to drought. We measured carbon and oxygen isotope ratios in growth rings of 95 spruces and 49 pines spanning 1985-1993. We used 13C discrimination (Δ13C) and 18O enrichment (Δ18O) as proxies for intrinsic water use efficiency and stomatal conductance, respectively. We studied how inter-annual variability in isotopic signals was linked to climate moisture index, vapor pressure deficit and annual snowfall amount. We found significantly lower Δ13C values over 1988-1990, and significantly higher Δ18O values in 1988-1989 and 1991 compared to the 1985-1993 averages. We also observed that a low climatic water balance and a high vapor pressure deficit were linked with low Δ13C and high Δ18O in the two study species, in parallel with low growth rates. The latter effect persisted into the year following drought for black spruce, but not for jack pine. These findings highlight that small differences in physiological parameters between species could translate into large differences in post-drought recovery. The stronger and longer lasting impact on black spruce compared to jack pine suggests a less efficient carbon use and a lower acclimation potential to future warmer and drier climate conditions.


Asunto(s)
Picea , Pinus , Canadá , Sequías , Ecosistema , Árboles
10.
Mol Ecol ; 30(16): 3898-3917, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33586257

RESUMEN

As boreal forests face significant threats from climate change, understanding evolutionary trajectories of coniferous species has become fundamental to adapting management and conservation to a drying climate. We examined the genomic architecture underlying adaptive variation related to drought tolerance in 43 populations of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by combining genotype-environment associations, genotype-phenotype associations, and transcriptomics. Adaptive genetic variation was identified by correlating allele frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes with temperature, precipitation and aridity gradients, and testing for significant associations between genotypes and 11 dendrometric and drought-related traits (i.e., anatomical, growth response and climate-sensitivity traits) using a polygenic model. We identified a set of 285 genes significantly associated with a climatic factor or a phenotypic trait, including 110 that were differentially expressed in response to drought under greenhouse-controlled conditions. The interlinked phenotype-genotype-environment network revealed eight high-confidence genes involved in white spruce adaptation to drought, of which four were drought-responsive in the expression analysis. Our findings represent a significant step toward the characterization of the genomic basis of drought tolerance and adaptation to climate in conifers, which is essential to enable the establishment of resilient forests in view of new climate conditions.


Asunto(s)
Picea , Tracheophyta , Sequías , Genómica , Fenotipo , Picea/genética , Tracheophyta/genética , Transcriptoma , Árboles/genética
11.
Nat Commun ; 12(1): 1169, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608515

RESUMEN

Assisted gene flow between populations has been proposed as an adaptive forest management strategy that could contribute to the sequestration of carbon. Here we provide an assessment of the mitigation potential of assisted gene flow in 46 populations of the widespread boreal conifer Picea mariana, grown in two 42-year-old common garden experiments and established in contrasting Canadian boreal regions. We use a dendroecological approach taking into account phylogeographic structure to retrospectively analyse population phenotypic variability in annual aboveground net primary productivity (NPP). We compare population NPP phenotypes to detect signals of adaptive variation and/or the presence of phenotypic clines across tree lifespans, and assess genotype-by-environment interactions by evaluating climate and NPP relationships. Our results show a positive effect of assisted gene flow for a period of approximately 15 years following planting, after which there was little to no effect. Although not long lasting, well-informed assisted gene flow could accelerate the transition from carbon source to carbon sink after disturbance.


Asunto(s)
Carbono/metabolismo , Flujo Génico , Picea/genética , Picea/metabolismo , Taiga , Canadá , Secuestro de Carbono , Clima , Cambio Climático , Geografía , Estudios Retrospectivos , Temperatura , Tracheophyta , Árboles/genética
12.
Glob Chang Biol ; 26(8): 4538-4558, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32421921

RESUMEN

The carbon isotope ratio (δ13 C) in tree rings is commonly used to derive estimates of the assimilation-to-stomatal conductance rate of trees, that is, intrinsic water-use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca ), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree-ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca . We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca , mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.


Asunto(s)
Dióxido de Carbono , Agua , Isótopos de Carbono/análisis , Clima , Bosques
13.
New Phytol ; 227(2): 427-439, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32173867

RESUMEN

Drought intensity and frequency are increasing under global warming, with soil water availability now being a major factor limiting tree growth in circumboreal forests. Still, the adaptive capacity of trees in the face of future climatic regimes remains poorly documented. Using 1481 annually resolved tree-ring series from 29-yr-old trees, we evaluated the drought sensitivity of 43 white spruce (Picea glauca (Moench) Voss) populations established in a common garden experiment. We show that genetic variation among populations in response to drought plays a significant role in growth resilience. Local genetic adaptation allowed populations from drier geographical origins to grow better, as indicated by higher resilience to extreme drought events, compared with populations from more humid geographical origins. The substantial genetic variation found for growth resilience highlights the possibility of selecting for drought resilience in boreal conifers. As a major research outcome, we showed that adaptive genetic variation in response to changing local conditions can shape drought vulnerability at the intraspecific level. Our findings have wide implications for forest ecosystem management and conservation.


Asunto(s)
Sequías , Tracheophyta , Cambio Climático , Ecosistema , Bosques , Variación Genética , Tracheophyta/genética , Árboles/genética
14.
Glob Chang Biol ; 25(8): 2793-2809, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31012507

RESUMEN

Currently, there is no consensus regarding the way that changes in climate will affect boreal forest growth, where warming is occurring faster than in other biomes. Some studies suggest negative effects due to drought-induced stresses, while others provide evidence of increased growth rates due to a longer growing season. Studies focusing on the effects of environmental conditions on growth-climate relationships are usually limited to small sampling areas that do not encompass the full range of environmental conditions; therefore, they only provide a limited understanding of the processes at play. Here, we studied how environmental conditions and ontogeny modulated growth trends and growth-climate relationships of black spruce (Picea mariana) and jack pine (Pinus banksiana) using an extensive dataset from a forest inventory network. We quantified the long-term growth trends at the stand scale, based on analysis of the absolutely dated ring-width measurements of 2,266 trees. We assessed the relationship between annual growth rates and seasonal climate variables and evaluated the effects of various explanatory variables on long-term growth trends and growth-climate relationships. Both growth trends and growth-climate relationships were species-specific and spatially heterogeneous. While the growth of jack pine barely increased during the study period, we observed a growth decline for black spruce which was more pronounced for older stands. This decline was likely due to a negative balance between direct growth gains induced by improved photosynthesis during hotter-than-average growing conditions in early summers and the loss of growth occurring the following year due to the indirect effects of late-summer heat waves on accumulation of carbon reserves. For stands at the high end of our elevational gradient, frost damage during milder-than-average springs could act as an additional growth stressor. Competition and soil conditions also modified climate sensitivity, which suggests that effects of climate change will be highly heterogeneous across the boreal biome.


Asunto(s)
Picea , Pinus , América del Norte , Taiga , Árboles
15.
Sci Adv ; 5(1): eaat4313, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746436

RESUMEN

Energy and water limitations of tree growth remain insufficiently understood at large spatiotemporal scales, hindering model representation of interannual or longer-term ecosystem processes. By assessing and statistically scaling the climatic drivers from 2710 tree-ring sites, we identified the boreal and temperate land areas where tree growth during 1930-1960 CE responded positively to temperature (20.8 ± 3.7 Mio km2; 25.9 ± 4.6%), precipitation (77.5 ± 3.3 Mio km2; 96.4 ± 4.1%), and other parameters. The spatial manifestation of this climate response is determined by latitudinal and altitudinal temperature gradients, indicating that warming leads to geographic shifts in growth limitations. We observed a significant (P < 0.001) decrease in temperature response at cold-dry sites between 1930-1960 and 1960-1990 CE, and the total temperature-limited area shrunk by -8.7 ± 0.6 Mio km2. Simultaneously, trees became more limited by atmospheric water demand almost worldwide. These changes occurred under mild warming, and we expect that continued climate change will trigger a major redistribution in growth responses to climate.


Asunto(s)
Árboles/crecimiento & desarrollo , Altitud , Cambio Climático , Ecosistema , Bosques , Estaciones del Año , Taiga , Temperatura , Agua
16.
Proc Natl Acad Sci U S A ; 116(7): 2749-2754, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30692257

RESUMEN

Due to anthropogenic emissions and changes in land use, trees are now exposed to atmospheric levels of [[Formula: see text]] that are unprecedented for 650,000 y [Lüthi et al. (2008) Nature 453:379-382] (thousands of tree generations). Trees are expected to acclimate by modulating leaf-gas exchanges and alter water use efficiency which may result in forest productivity changes. Here, we present evidence of one of the strongest, nonlinear, and unequivocal postindustrial increases in intrinsic water use efficiency ([Formula: see text]) ever documented (+59%). A dual-isotope tree-ring analysis ([Formula: see text] and [Formula: see text]) covering 715 y of growth of North America's oldest boreal trees (Thuja occidentalis L.) revealed an unprecedented increase in [Formula: see text] that was directly linked to elevated assimilation rates of [Formula: see text] (A). However, limited nutrient availability, changes in carbon allocation strategies, and changes in stomatal density may have offset stem growth benefits awarded by the increased [Formula: see text] Our results demonstrate that even in scenarios where a positive [Formula: see text] fertilization effect is observed, other mechanisms may prevent trees from assimilating and storing supplementary anthropogenic emissions as above-ground biomass. In such cases, the sink capacity of forests in response to changing atmospheric conditions might be overestimated.


Asunto(s)
Dióxido de Carbono , Árboles/fisiología , Agua , Aclimatación , América del Norte , Árboles/crecimiento & desarrollo
17.
New Phytol ; 218(2): 630-645, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29314017

RESUMEN

Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Estudios de Asociación Genética , Pinus/genética , Pinus/fisiología , Árboles/genética , Árboles/fisiología , Genotipo , Geografía , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Quebec
18.
Proc Natl Acad Sci U S A ; 113(52): E8406-E8414, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956624

RESUMEN

Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration.


Asunto(s)
Dióxido de Carbono/química , Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Biomasa , Canadá , Ciclo del Carbono , Ecología , Geografía , Modelos Estadísticos , Análisis de Regresión , Taiga , Temperatura , Factores de Tiempo
19.
Glob Chang Biol ; 22(2): 627-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26507106

RESUMEN

An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.


Asunto(s)
Cambio Climático , Modelos Teóricos , Picea/crecimiento & desarrollo , Canadá , Dióxido de Carbono , Clima , Suelo/química , Taiga , Temperatura , Agua/análisis
20.
Sci Rep ; 5: 13356, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330162

RESUMEN

Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000 BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300 BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.


Asunto(s)
Cambio Climático , Incendios , Actividades Humanas , Paleontología , Plantas , Biomasa , Canadá , Carbón Orgánico , Geografía , Humanos , Análisis de los Mínimos Cuadrados , Polen , Lluvia , Estaciones del Año , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...