Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theranostics ; 11(19): 9538-9556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646385

RESUMEN

As complex and heterogeneous diseases, cancers require a more tailored therapeutic management than most pathologies. Recent advances in anticancer drug development, including the immuno-oncology revolution, have been too often plagued by unsatisfying patient response rates and survivals. In reaction to this, cancer care has fully transitioned to the "personalized medicine" concept. Numerous tools are now available tools to better adapt treatments to the profile of each patient. They encompass a large array of diagnostic assays, based on biomarkers relevant to targetable molecular pathways. As a subfamily of such so-called companion diagnostics, chemosensitivity and resistance assays represent an attractive, yet insufficiently understood, approach to individualize treatments. They rely on the assessment of a composite biomarker, the ex vivo functional response of cancer cells to drugs, to predict a patient's outcome. Systemic treatments, such as chemotherapies, as well as targeted treatments, whose efficacy cannot be fully predicted yet by other diagnostic tests, may be assessed through these means. The results can provide helpful information to assist clinicians in their decision-making process. We explore here the most advanced functional assays across oncology indications, with an emphasis on tests already displaying a convincing clinical demonstration. We then recapitulate the main technical obstacles faced by researchers and clinicians to produce more accurate, and thus more predictive, models and the recent advances that have been developed to circumvent them. Finally, we summarize the regulatory and quality frameworks surrounding functional assays to ensure their safe and performant clinical implementation. Functional assays are valuable in vitro diagnostic tools that already stand beyond the "proof-of-concept" stage. Clinical studies show they have a major role to play by themselves but also in conjunction with molecular diagnostics. They now need a final lift to fully integrate the common armament used against cancers, and thus make their way into the clinical routine.


Asunto(s)
Neoplasias/terapia , Medicina de Precisión/métodos , Bioensayo , Biomarcadores Farmacológicos/análisis , Biomarcadores de Tumor/análisis , Humanos , Oncología Médica/métodos , Patología Molecular , Medicina de Precisión/tendencias
2.
Trials ; 22(1): 556, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419125

RESUMEN

BACKGROUND: Colorectal cancer is a major public concern, being the second deadliest cancer in the world. Whereas survival is high for localized forms, metastatic colorectal cancer has showed poor prognosis, with a 5-year survival barely surpassing 11%. Conventional chemotherapies against this disease proved their efficiency and remain essential in first-line treatment. However, the large number of authorized protocols complexifies treatment decision. In common practice, such decision is made on an empirical basis, by assessing benefits and risks for the patient. In other words, there is currently no efficient means of predicting the efficacy of any chemotherapy protocol for metastatic colorectal cancer. METHODS/DESIGN: The use of a chemosensitivity assay, the Oncogramme®, should help clinicians administer the best chemotherapy regimen to their patients. We hypothesize it would ultimately improve their survival. In this multicentred, prospective trial (ONCOGRAM), eligible patients with metastatic colorectal cancer are randomized to determine whether they will receive an Oncogramme®. For clinicians whose patients benefited from the assay (arm A), results are used as a decision support tool. Patients not undergoing the Oncogramme® procedure are treated according to current practice, without the assistance of the assay (arm B). Primary outcome is 1-year progression-free survival. Secondary outcomes include response rates, as well as 6-month and 1-year survival rates. DISCUSSION: This study aims at investigating the clinical utility of the Oncogramme® as a decision support tool for the treatment of patients with metastatic colorectal cancer. If the Oncogramme® positively influenced patient overall survival and/or progression-free survival, it would be of great value for clinicians to implement this assay within the current landscape of personalized medicine tools, which include genomics and biomarker assays. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT03133273 . Registered on April 28, 2017.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Anal Chem ; 91(14): 8948-8957, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31179686

RESUMEN

Cancer stem cells (CSCs) play critical roles in cancer, making them important targets for new diagnostic and therapeutic approaches. Since CSCs are heterogeneous and not abundant in tumors, and few specific markers for these cells currently exist, new methods to isolate and characterize them are required. To address this issue, we developed a new label-free methodology to isolate, enrich, and identify CSCs from an heterogeneous tumor cell subpopulation using a cell sorting method (sedimentation field flow fractionation, SdFFF) and a biosensor as a detector. Enrichment was optimized using an original protocol and U87-MG glioblastoma cells cultured in a normal (N) or defined (D) medium (± fetal bovine serum, FBS) under normoxic (N, pO2 = 20%) or hypoxic (H, pO2 < 2%) conditions to obtain four cell populations: NN, NH, DN, and DH. After elution of CSCs via SdFFF using the hyperlayer mode (inertial elution mode for micrometer-sized species), we isolated eight subpopulations with distinct CSC contents based on phenotypical and functional properties, ranging from NN F1 with a lower CSC content to DH F3 with a higher CSC content. Reflecting biological differences, the intrinsic intracellular dielectric permittivity increased from NN to DH conditions. The largest difference in electromagnetic signature was observed between NN F1 and DH F3, in which the CSC content was lowest and highest, respectively. The results demonstrate that microwave dielectric spectroscopy can be used to reliably and efficiently distinguish stem cell characteristics. This new instrumental and methodological approach is an important innovation that allows both enrichment and detection of CSCs, opening the door to novel diagnostic and therapeutic approaches.


Asunto(s)
Separación Celular/métodos , Fraccionamiento de Campo-Flujo/métodos , Glioblastoma/patología , Células Madre Neoplásicas/patología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Movimiento Celular , Separación Celular/instrumentación , Diseño de Equipo , Fraccionamiento de Campo-Flujo/instrumentación , Humanos
4.
Front Psychol ; 8: 930, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28649209

RESUMEN

Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

5.
J Transl Med ; 14: 10, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26791256

RESUMEN

BACKGROUND: Colorectal cancer (CRC) remains a major public concern. While conventional chemotherapeutic regimens have proved useful against advanced/metastatic diseases, progresses are to be made to effectively cure the large portion of patients not benefiting from these treatments. One direction to improve response rates is to develop chemosensitivity and resistance assays (CSRAs) efficiently assisting clinicians in treatment selection process, an already long preoccupation of oncologists and researchers. Several methods have been described to this day, none achieving yet sufficient reliability for recommended use in the clinical routine. METHODS: We led a pilot study on 19 metastatic CRC patients evaluating capacity of the Oncogramme, a standardized process using tumor ex vivo models, to provide chemosensitivity profiles and predict clinical outcome of patients receiving standard CRC chemotherapeutics. Oncogramme responses were categorized according to the method of percentiles to assess sensitivity, specificity and concordance. RESULTS: We report from a primary analysis a success rate of 97.4 %, a very good sensitivity (84.6 %), a below-average specificity (33.3 %), along with a global agreement of 63.6 % and a concordance between Oncogramme results and patients' responses (Kappa coefficient) of 0.193. A supplementary analysis, focusing on CRC patients with no treatment switch over a longer time course, demonstrated improvement in specificity and concordance. CONCLUSIONS: Results establish feasibility and usefulness of the Oncogramme, prelude to a larger-scale trial. Advantages and drawbacks of the procedure are discussed, as well as the place of CSRAs within the future arsenal of methods available to clinicians to individualize treatments and improve patient prognosis. TRIAL REGISTRATION: ClinicalTrials.gov database, registration number: NCT02305368.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Selección de Paciente , Proyectos Piloto , Resultado del Tratamiento
6.
Artículo en Inglés | MEDLINE | ID: mdl-24927420

RESUMEN

The development of methods to enrich cell populations for cancer stem cells (CSC) is urgently needed to help understand tumor progression, therapeutic escape and to evaluate new drugs, in particular for colorectal cancer (CRC). In this work, we describe the in vitro use of OncoMiD for colon, a CRC-specific primary cell culture medium, to enrich CRC cell lines in CSC. Sedimentation field flow fractionation (SdFFF) was used to monitor the evolution of subpopulations composition. In these models, medium induced a loss of adherence properties associated with a balance between proliferation and apoptosis rates and, more important, an increased expression of relevant CSC markers, leading to specific SdFFF elution profile changes.


Asunto(s)
Separación Celular/instrumentación , Neoplasias Colorrectales/patología , Medios de Cultivo/metabolismo , Fraccionamiento de Campo-Flujo/instrumentación , Células Madre Neoplásicas/citología , Apoptosis , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
7.
Exp Ther Med ; 3(5): 873-877, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22969985

RESUMEN

p75(NTR), a member of the tumor necrosis factor superfamily, plays a key role in numerous physiological processes, including cell survival or apoptosis. Yet, the associated signaling pathways remain poorly understood. Similar to Notch, γ-secretase cleavage is implicated in the p75(NTR) signaling pathway leading to nuclear translocation of the intracellular domain and cell death. Fas receptor activation was found to promote cell death apoptosis in several cell lines. The goal of this study was to determine the respective role of p75(NTR) and Notch in the resistance to Fas-induced apoptosis in the U-87 MG glioblastoma cell line. Using the γ-secretase inhibitor, we investigated the modulation of Fas-induced apoptosis dependent on p75(NTR)-Fas receptor interaction. Whereas the U-87 MG cells expressed the Fas receptor at the cell membrane, apoptosis induced by Fas activation was decreased by the γ-secretase inhibitor. These data suggest that γ-secretase is implicated in p75(NTR) and Fas interaction leading to cell death signaling.

8.
Int J Oncol ; 38(2): 391-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21152857

RESUMEN

The P75 neurotrophin receptor (p75NTR) is a cell surface receptor that can induce apoptosis in many cell types. This receptor plays a major role in the development of the central nervous system and is expressed in some adult brain cells. Its implication in cell apoptosis or survival is probably of major importance in cellular homeostasis and thus p75NTR could be implicated in tumor resistance to death. In this study, we investigated the intracellular expression of p75NTR in a human glioblastoma cell line. Detection of p75NTR receptor in Golgi apparatus by immunofluorescence microscopy, or after Golgi apparatus extraction, could be correlated with a decrease of cell apoptosis leading cells to become tumorous. This hypothesis is supported by a loss of ligand-induced apoptosis in this cell line. Our observations show that p75NTR can be sequestered in the Golgi complex and could then be, in part, responsible for the cell resistance to apoptosis and for brain tumor formation.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Aparato de Golgi/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Apoptosis , Western Blotting , Neoplasias Encefálicas/patología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glioblastoma/patología , Glicósido Hidrolasas/metabolismo , Humanos , Técnicas para Inmunoenzimas , Microdominios de Membrana/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares , Células Tumorales Cultivadas
9.
Cytotechnology ; 62(5): 381-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20820914

RESUMEN

Colon cancer is the second leading cause of cancer-related death in industrialized countries. Many anti-cancer researches are consequently performed and individualized tumor response testing (ITRT) methods are now used to individualize patient chemotherapeutic administrations. Then, a new ITRT method, Oncogramme, was developed for colon cancer. Colon tumor fragments from different patients were dissociated and seeded in a defined culture medium. Cell preparation process as well as culture medium allowed high cell viability and a good primary culture success rate. After treatment of isolated tumoral cells by chemotherapeutics alone or in combination, cytotoxicity was determined by cell death assay allowing the Oncogramme establishment, which was validated by statistical analysis. Indeed, significant results were obtained such as different profile for each patient's cells with various drugs, and variability between patient's cells in the response to each drug. Procedure described here to obtain the Oncogramme is a new, fast and technically reliable ITRT method applied to colon cancer. For an individualized cancer treatment use, this test should be further validated by a phase I clinical trial.

10.
Int J Oncol ; 30(1): 273-81, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17143538

RESUMEN

Human glioblastomas that express Fas/CD95 receptor are highly resistant to conventional brain tumour therapies. The aim of this study is to evaluate anti-tumour properties of a combination of Fas ligand (FasL) plus etoposide with or without dexamethasone on intracerebral experimental glioblastomas. The human Fas-expressing glioblastoma cell line, U-87 MG, was firstly studied in vitro for apoptosis and proliferation assays in the presence of FasL and etoposide, separately or associated, in order to detect a supra-additive effect on FasL or etoposide-induced apoptosis. The tumourigenicity of the U-87 MG cell line and therapeutic effects of FasL-etoposide alone or combined with dexamethasone were next studied on U-87 MG cells xenografted to nude-rat brain and tumour size was hence examined by histological and immunohistochemical stainings. We demonstrated in vitro that the combination of both molecules strongly inhibited the proliferation rate and increased the sensitivity of glioblastoma cells to Fas or etoposide-mediated apoptosis. Moreover, analysis of rat brains was performed 30 days after xenograft of glioblastoma cells. These data show that the combination of FasL and etoposide could reduce significantly the tumour size and that the addition of dexamethasone enhanced the inhibiting effect of FasL and etoposide on tumour growth in vivo.


Asunto(s)
Apoptosis/efectos de los fármacos , Etopósido/uso terapéutico , Proteína Ligando Fas/uso terapéutico , Glioblastoma/patología , Animales , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Ratas , Ratas Desnudas , Trasplante Heterólogo
11.
Mol Biochem Parasitol ; 139(1): 41-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15610818

RESUMEN

During human African trypanosomiasis, trypanosomes (Trypanosoma brucei gambiense or T. b. rhodesiense) invade the central nervous system (CNS). Mechanisms of blood-brain barrier and blood-cerebrospinal fluid barrier leakage remain unknown. To better understand the relationships between trypanosomes and endothelial cells, the principal cell population of those barriers, we cultured a human bone marrow endothelial cell (HBMEC) line in the presence or absence of T. b. gambiense, to study cell activation. As indicated by NF-kappaB translocation to the nucleus, cells were activated in the presence of trypanosomes. The expression of the adhesion molecules ICAM-1, E-selectin and VCAM-1 increased in co-culture. The parasites induced the synthesis of the pro-inflammatory cytokines TNF-alpha, IL-6 and IL-8, and of nitric oxide (NO) by HBMEC. Cells were also cultured in the presence of parasite variant surface glycoproteins (VSGs), and an increase in TNF-alpha, IL-6, IL-8, and NO synthesis was also observed. Soluble VSGs induced NF-kappaB translocation, and the expression of adhesion molecules, indicating that they could possibly be the molecular soluble factor responsible for endothelial cell activation. The permeability coefficient of HBMEC layer increased when cells were cultured in the presence of trypanosomes, parasite culture supernatant, or VSGs. Thus, T. b. gambiense can activate endothelial cells in vitro, through the release of soluble activating factors. Consequences of endothelial cell activation by parasite products may include a potentiation of the inflammatory reaction, leukocyte recruitment, passage of trypanosomes into the CNS, and barrier dysfunction observed during CNS involvement of HAT.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/parasitología , Trypanosoma brucei brucei/fisiología , Animales , Permeabilidad de la Membrana Celular , Células Cultivadas , Selectina E/biosíntesis , Regulación de la Expresión Génica , Humanos , Molécula 1 de Adhesión Intercelular/biosíntesis , Interleucina-6/biosíntesis , Interleucina-8/biosíntesis , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Factor de Necrosis Tumoral alfa/biosíntesis , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Molécula 1 de Adhesión Celular Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA