Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(16): E3354-E3363, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373552

RESUMEN

"Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Metales/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Raíces de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Transporte Iónico , Mutación , Fenotipo , Raíces de Plantas/crecimiento & desarrollo
2.
Plant Physiol ; 169(1): 748-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26232490

RESUMEN

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an ethyl methanesulfonate-mutagenized population of nramp3nramp4 seedlings for mutations suppressing their phenotypes on low Fe. Here, we report that, among the suppressors, two independent mutations in the VACUOLAR IRON TRANSPORTER1 (AtVIT1) gene caused the suppressor phenotype. The AtVIT1 transporter is involved in Fe influx into vacuoles of endodermal and bundle sheath cells. This result establishes a functional link between Fe loading in vacuoles by AtVIT1 and its remobilization by AtNRAMP3 and AtNRAMP4. Moreover, analysis of subcellular Fe localization indicates that simultaneous disruption of AtVIT1, AtNRAMP3, and AtNRAMP4 limits Fe accumulation in vacuolar globoids.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Hierro/metabolismo , Mutación/genética , Vacuolas/metabolismo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Genes Supresores , Germinación/efectos de los fármacos , Hierro/farmacología , Modelos Biológicos , Mutagénesis , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Espectrometría por Rayos X , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos
3.
Plant J ; 83(4): 625-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26088788

RESUMEN

Each essential transition metal plays a specific role in metabolic processes and has to be selectively transported. Living organisms need to discriminate between essential and non-essential metals such as cadmium (Cd(2+) ), which is highly toxic. However, transporters of the natural resistance-associated macrophage protein (NRAMP) family, which are involved in metal uptake and homeostasis, generally display poor selectivity towards divalent metal cations. In the present study we used a unique combination of yeast-based selection, electrophysiology on Xenopus oocytes and plant phenotyping to identify and characterize mutations that allow plant and mammalian NRAMP transporters to discriminate between their metal substrates. We took advantage of the increased Cd(2+) sensitivity of yeast expressing AtNRAMP4 to select mutations that decrease Cd(2+) sensitivity while maintaining the ability of AtNRAMP4 to transport Fe(2+) in a population of randomly mutagenized AtNRAMP4 cDNAs. The selection identified mutations in three residues. Among the selected mutations, several affect Zn(2+) transport, whereas only one, E401K, impairs Mn(2+) transport by AtNRAMP4. Introduction of the mutation F413I, located in a highly conserved domain, into the mammalian DMT1 transporter indicated that the importance of this residue in metal selectivity is conserved among NRAMP transporters from plant and animal kingdoms. Analyses of overexpressing plants showed that AtNRAMP4 affects the accumulation of metals in roots. Interestingly, the mutations selectively modify Cd(2+) and Zn(2+) accumulation without affecting Fe transport mediated by NRAMP4 in planta. This knowledge may be applicable for limiting Cd(2+) transport by other NRAMP transporters from animals or plants.


Asunto(s)
Arabidopsis/metabolismo , Cadmio/toxicidad , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Metales/metabolismo , Mutación , Vacuolas/metabolismo
4.
Plant Cell Environ ; 36(4): 804-17, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22998565

RESUMEN

Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Cadmio/toxicidad , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Vacuolas/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Clorofila/metabolismo , Homeostasis , Mutación , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Regulación hacia Arriba
5.
PLoS One ; 6(5): e20243, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21633512

RESUMEN

On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enterobacteriaceae/fisiología , Mutación , Agua/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura
6.
EMBO J ; 26(13): 3216-26, 2007 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-17557075

RESUMEN

Light activates proton (H(+))-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO(2) to photosynthetic tissues. Light to darkness transition, high CO(2) levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H(+)-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO(2) and darkness. The OST2 gene encodes the major plasma membrane H(+)-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H(+)-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure.


Asunto(s)
Ácido Abscísico/farmacología , Membrana Celular/enzimología , ATPasas de Translocación de Protón/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Tamaño de la Célula , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Necrosis/enzimología , Necrosis/genética , Necrosis/patología , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente , ATPasas de Translocación de Protón/genética , Protones , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Plant Physiol ; 141(4): 1316-27, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16766677

RESUMEN

The phytohormone abscisic acid (ABA) mediates drought responses in plants and, in particular, triggers stomatal closure. Snf1-related kinase 2 (SnRK2) proteins from several plant species have been implicated in ABA-signaling pathways. In Arabidopsis (Arabidopsis thaliana) guard cells, OPEN STOMATA 1 (OST1)/SRK2E/SnRK2-6 is a critical positive regulator of ABA signal transduction. A better understanding of the mechanisms responsible for SnRK2 protein kinase activation is thus a major goal toward understanding ABA signal transduction. Here, we report successful purification of OST1 produced in Escherichia coli: The protein is active and autophosphorylates. Using mass spectrometry, we identified five target residues of autophosphorylation in recombinant OST1. Sequence analysis delineates two conserved boxes located in the carboxy-terminal moiety of OST1 after the catalytic domain: the SnRK2-specific box (glutamine-303 to proline-318) and the ABA-specific box (leucine-333 to methionine-362). Site-directed mutagenesis and serial deletions reveal that serine (Ser)-175 in the activation loop and the SnRK2-specific box are critical for the activity of recombinant OST1 kinase. Targeted expression of variants of OST1 kinase in guard cells uncovered additional features that are critical for OST1 function in ABA signaling, although not required for OST1 kinase activity: Ser-7, Ser-18, and Ser-29 and the ABA-specific box. Ser-7, Ser-18, Ser-29, and Ser-43 represent putative targets for regulatory phosphorylation and the ABA-specific box may be a target for the binding of signaling partners in guard cells.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Ácido Abscísico/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/citología , Proteínas de Arabidopsis/aislamiento & purificación , Secuencia Conservada , Escherichia coli/genética , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Quinasas/aislamiento & purificación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Serina/fisiología , Transducción de Señal
8.
Plant Cell ; 18(7): 1642-51, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16731585

RESUMEN

In Arabidopsis thaliana, four major regulators (ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], LEAFY COTYLEDON1 [LEC1], and LEC2) control most aspects of seed maturation, such as accumulation of storage compounds, cotyledon identity, acquisition of desiccation tolerance, and dormancy. The molecular basis for complex genetic interactions among these regulators is poorly understood. By analyzing ABI3 and FUS3 expression in various single, double, and triple maturation mutants, we have identified multiple regulatory links among all four genes. We found that one of the major roles of LEC2 was to upregulate FUS3 and ABI3. The lec2 mutation is responsible for a dramatic decrease in ABI3 and FUS3 expression, and most lec2 phenotypes can be rescued by ABI3 or FUS3 constitutive expression. In addition, ABI3 and FUS3 positively regulate themselves and each other, thereby forming feedback loops essential for their sustained and uniform expression in the embryo. Finally, LEC1 also positively regulates ABI3 and FUS3 in the cotyledons. Most of the genetic controls discovered were found to be local and redundant, explaining why they had previously been overlooked. This works establishes a genetic framework for seed maturation, organizing the key regulators of this process into a hierarchical network. In addition, it offers a molecular explanation for the puzzling variable features of lec2 mutant embryos.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Semillas , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cotiledón/anatomía & histología , Cotiledón/fisiología , Hibridación in Situ , Mutación , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/crecimiento & desarrollo , Semillas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Exp Bot ; 56(412): 597-603, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15642716

RESUMEN

The Arabidopsis thaliana genome contains approximately 80 genes encoding basic leucine zipper transcription factors, divided into 11 groups. Abscisic Acid-Insensitive 5 (ABI5) is one of the 13 members of group A and is involved in ABA signalling during seed maturation, and germination. Seven other members of this group are expressed during seed maturation, but only one of them (Enhanced Em Level, EEL) has been functionally characterized during this developmental phase. Since EEL and two other group A genes, AtbZIP67 and AREB3 (ABA-Responsive Element Binding protein 3), display similar mRNA temporal expression in whole siliques, it is suspected that they might share some overlapping functions. To address this question, the proteins' tissular and subcellular localization in transgenic Arabidopsis were precisely characterized, using translational fusions with a green fluorescent protein (GFP) expressed under the corresponding bZIP promoter. It was found that the three fusion proteins were expressed with a largely overlapping pattern and constitutively localized in the nuclei. An RNA interference approach (RNAi) was then used to knock out the expression of all three genes simultaneously. Endogenous EEL, AREB3, and AtbZIP67 transcripts could be specifically reduced, but no visible defects could be observed during seed maturation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Leucina Zippers , Semillas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/embriología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Familia de Multigenes , Interferencia de ARN , Proteínas Represoras/metabolismo
10.
FEBS Lett ; 561(1-3): 127-31, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15013763

RESUMEN

The Arabidopsis abscisic acid (ABA) insensitive (ABI)5 transcription factor participates in the ABA-dependent induction of late embryogenesis abundant (LEA) genes in the final stages of seed development. We tested whether the VP16 transcriptional activation domain is sufficient to provide ABI5 with the ability to activate the AtEm LEA genes in vegetative tissues. We took advantage of a new transgenic seed selection assay based on green fluorescent protein (GFP) fluorescence and found that VP16-ABI5 triggered growth retardation and ABA-independent induction of AtEm1 in seedlings. These results indicate that ABI5 activation potential is a limiting step and might be a target for ABA signaling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Plantas Modificadas Genéticamente , Semillas/genética , Factores de Transcripción/genética , Alelos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Etopósido/farmacología , Regulación de la Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Semillas/crecimiento & desarrollo , Activación Transcripcional
11.
Development ; 130(24): 6065-73, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14597573

RESUMEN

The expression of seed storage proteins is under tight developmental regulation and represents a powerful model system to study the regulation of gene expression during plant development. In this study, we show that three homologous B3 type transcription factors regulate the model storage protein gene, At2S3, via two distinct mechanisms: FUSCA3 (FUS3) and LEAFY COTYLEDON2 (LEC2) activate the At2S3 promoter in yeast suggesting that they regulate At2S3 by directly binding its promoter; ABSCISIC ACID INSENSITIVE3 (ABI3), however, appears to act more indirectly on At2S3, possibly as a cofactor in an activation complex. In accordance with this, FUS3 and LEC2 were found to act in a partially redundant manner and differently from ABI3 in planta: At2S3 expression is reduced to variable and sometimes only moderate extent in fus3 and lec2 single mutants but is completely abolished in the lec2 fus3 double mutant. In addition, we found that FUS3 and LEC2 expression patterns, together with an unsuspected regulation of FUS3 by LEC2, enable us to explain the intriguing expression pattern of At2S3 in lec2 or fus3 single mutants. Based on these results, we present a model of At2S3 regulation and discuss its implications for other aspects of seed maturation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/fisiología , Proteínas de Arabidopsis/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción , Técnicas del Sistema de Dos Híbridos
12.
Plant Cell ; 14(12): 3089-99, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12468729

RESUMEN

During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Epidermis de la Planta/fisiología , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Mapeo Cromosómico , Clonación Molecular , Desastres , Regulación Enzimológica de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Mutación , Filogenia , Epidermis de la Planta/citología , Proteínas Quinasas/metabolismo , Agua/fisiología
13.
Plant J ; 30(5): 601-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12047634

RESUMEN

In response to drought, plants synthesise the hormone abscisic acid (ABA), which triggers closure of the stomatal pores. This process is vital for plants to conserve water by reducing transpirational water loss. Moreover, recent studies have demonstrated the advantages of the Arabidopsis stomatal guard cell for combining genetic, molecular and biophysical approaches to characterise ABA action. However, genetic dissection of stomatal regulation has been limited by the difficulty of identifying a reliable phenotype for mutant screening. Leaf temperature can be used as an indicator to detect mutants with altered stomatal control, since transpiration causes leaf cooling. In this study, we optimised experimental conditions under which individual Arabidopsis plants with altered stomatal responses to drought can be identified by infrared thermography. These conditions were then used to perform a pilot screen for mutants that displayed a reduced ability to close their stomata and hence appeared colder than the wild type. Some of the mutants recovered were deficient in ABA accumulation, and corresponded to alleles of the ABA biosynthesis loci ABA1, ABA2 and ABA3. Interestingly, two of these novel aba2 alleles were able to intragenically complement the aba2-1 mutation. The remaining mutants showed reduced ABA responsiveness in guard cells. In addition to the previously known abi1-1 mutation, we isolated mutations at two novel loci designated as OST1 (OPEN STOMATA 1) and OST2. Remarkably, ost1 and ost2 represent, to our knowledge, the first Arabidopsis mutations altering ABA responsiveness in stomata and not in seeds.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas/genética , Rayos Infrarrojos , Mutación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Termografía , Alelos , Arabidopsis/citología , Temperatura Corporal , Desecación , Hojas de la Planta/citología , Agua/metabolismo
14.
Plant Cell ; 14(6): 1391-403, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12084834

RESUMEN

In Arabidopsis, the basic leucine zipper transcription factor ABI5 activates several late embryogenesis-abundant genes, including AtEm1 and AtEm6. However, the expression of many other seed maturation genes is independent of ABI5. We investigated the possibility that ABI5 homologs also participate in the regulation of gene expression during seed maturation. We identified 13 ABI5-related genes in the Arabidopsis genomic sequence. RNA gel blot analysis showed that seven of these genes are active during seed maturation and that they display distinct expression kinetics. We isolated and characterized two mutant alleles of one of these genes, AtbZIP12/EEL. Unlike abi5, the eel mutations did not inhibit the expression of any of the maturation marker genes that we monitored. On the contrary, the accumulation of the AtEm1 and AtEm6 mRNAs was enhanced in eel mutant seeds compared with wild-type seeds. Gel mobility shift assays, combined with analysis of the genetic interactions among the eel and abi5 mutations, indicated that ABI5 and EEL compete for the same binding sites within the AtEm1 promoter. This study illustrates how two homologous transcription factors can play antagonistic roles to fine-tune gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Semillas/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Cartilla de ADN , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Leucina Zippers , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-15012233

RESUMEN

The plant hormone abscisic acid (ABA) plays a major role in seed maturation and germination, as well as in adaptation to abiotic environmental stresses. ABA promotes stomatal closure by rapidly altering ion fluxes in guard cells. Other ABA actions involve modifications of gene expression, and the analysis of ABA-responsive promoters has revealed a diversity of potential cis-acting regulatory elements. The nature of the ABA receptor(s) remains unknown. In contrast, combined biophysical, genetic, and molecular approaches have led to considerable progress in the characterization of more downstream signaling elements. In particular, substantial evidence points to the importance of reversible protein phosphorylation and modifications of cytosolic calcium levels and pH as intermediates in ABA signal transduction. Exciting advances are being made in reassembling individual components into minimal ABA signaling cascades at the single-cell level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...