Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Eng Sci Med ; 46(2): 773-786, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37039978

RESUMEN

Intravascular Ultrasound (IVUS) is a medical imaging modality widely used for the detection and treatment of coronary heart disease. The detection of vascular structures is extremely important for accurate treatment procedures. Manual detection of lumen and calcification is very time-consuming and requires technical experience. Ultrasound imaging suffers from the generation of artifacts which obstructs the clear delineation among structures. Considering, the need, to provide special attention to crucial areas, convolutional block attention modules (CBAM) is integrated into an encoder-decoder-based U-Net architecture along with Atrous Spatial Pyramid Pooling (ASPP) to detect vessel components: lumen, calcification and shadow borders. The attention modules prove effective in dealing with areas of special attention by assigning additional weights to crucial channels and preserving spatial features. The IVUS data of 12 patients undergoing the treatment is taken for this study. The novelty of the model design is such that it is able to detect the lumen area in the presence/absence of calcification and bifurcation artifacts too. Also, the model efficiently detects the calcification area even in case of severely complex lesions with shadows behind them. The main contribution of the work is that IVUS images of varying degrees of calcification till 360° are also considered in this work, which is usually neglected in previous studies. The experimental results of 1097 IVUS images of 12 patients resulted in meanIoU (0.7894 ± 0.011), Dice Coefficient (0.8763 ± 0.070), precision (0.8768 ± 0.069) and recall (0.8774 ± 0.071) of the proposed model CADNet which show the model's effectiveness relative to other state-of-the art methods.


Asunto(s)
Enfermedad de la Arteria Coronaria , Ultrasonografía Intervencional , Humanos , Ultrasonografía Intervencional/métodos , Ultrasonografía/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen
2.
Ultrason Imaging ; 45(3): 136-150, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37052393

RESUMEN

Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.


Asunto(s)
Calcinosis , Aprendizaje Automático , Humanos , Ultrasonografía , Ultrasonografía Intervencional/métodos
3.
Cardiovasc Eng Technol ; 14(2): 264-295, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36650320

RESUMEN

Intravascular Ultrasound images (IVUS) is a useful guide for medical practitioners to identify the vascular status of coronary arteries in human beings. IVUS is a unique intracoronary imaging modality that is used as an adjunct to angioplasty to view vessel structures using a catheter with high resolutions. Segmentation of IVUS images has always remained a challenging task due to various impediments, for example, similar tissue components, vessel structures, and artifacts imposed during the acquisition process. Many researchers have applied various techniques to develop standard methods of image interpretation, however, the ultimate goal is still elusive to most researchers. This challenge was presented at the MICCAI- Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop in 2011. This paper presents a major review of recently reported work in the field, with a detailed analysis of various segmentation techniques applied in IVUS, and highlights the directions for future research. The findings recommend a reference database with a larger number of samples acquired at varied transducer frequencies with special consideration towards complex lesions, suitable validation metrics, and ground-truth definition as a standard against which to compare new and current algorithms.


Asunto(s)
Vasos Coronarios , Ultrasonografía Intervencional , Humanos , Vasos Coronarios/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Ultrasonografía/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...