Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Syst Neurosci ; 16: 836778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090185

RESUMEN

Creating flexible and robust brain machine interfaces (BMIs) is currently a popular topic of research that has been explored for decades in medicine, engineering, commercial, and machine-learning communities. In particular, the use of techniques using reinforcement learning (RL) has demonstrated impressive results but is under-represented in the BMI community. To shine more light on this promising relationship, this article aims to provide an exhaustive review of RL's applications to BMIs. Our primary focus in this review is to provide a technical summary of various algorithms used in RL-based BMIs to decode neural intention, without emphasizing preprocessing techniques on the neural signals and reward modeling for RL. We first organize the literature based on the type of RL methods used for neural decoding, and then each algorithm's learning strategy is explained along with its application in BMIs. A comparative analysis highlighting the similarities and uniqueness among neural decoders is provided. Finally, we end this review with a discussion about the current stage of RLBMIs including their limitations and promising directions for future research.

2.
Int Forum Allergy Rhinol ; 11(12): 1637-1646, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34148298

RESUMEN

BACKGROUND: Discrimination of nasal cavity mass lesions is a challenging work requiring extensive experience. A deep learning-based automated diagnostic system may help clinicians to classify nasal cavity mass lesions. We demonstrated the feasibility of a convolutional neural network (CNN)-based diagnosis system for automatic detection and classification of nasal polyps (NP) and inverted papillomas (IP). METHODS: We developed a CNN-based algorithm using a transfer learning strategy and trained it on nasal endoscopic images. A total of 99 nasal endoscopic images with normal findings, 98 images with NP, and 100 images with IP were analyzed using the developed CNN. Six otolaryngologists participated in clinical visual assessment. Image-based classification performance was measured by calculating the accuracy and area under the receiver operating characteristic curve (AUC). The diagnostic performance was compared between the CNN and clinical visual assessment by human experts. RESULTS: The algorithm achieved an overall accuracy of 0.742 ± 0.058 with the following class accuracies: normal, 0.81± 0.14; IP, 0.57 ± 0.07; and NP, 0.83 ± 0.21. The AUC values for normal, IP, and NP were 0.91 ± 0.06, 0.82 ± 0.09, and 0.84 ± 0.06, respectively. The overall accuracy of the CNN model was comparable with the average performance of human experts (0.742 vs. 0.749; p = 0.11). CONCLUSIONS: The trained CNN model appears to reliably classify NP and IP of the nasal cavity from nasal endoscopic images; it also yields a reliable reference for diagnosing nasal cavity mass lesions during nasal endoscopy. However, further studies with more test data are warranted to improve the diagnostic accuracy of our CNN model.


Asunto(s)
Aprendizaje Profundo , Pólipos Nasales , Papiloma Invertido , Algoritmos , Endoscopía , Estudios de Factibilidad , Humanos , Cavidad Nasal/diagnóstico por imagen , Pólipos Nasales/diagnóstico por imagen , Papiloma Invertido/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...