Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 9(1)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823455

RESUMEN

We registered surface enhanced Raman scattering (SERS) spectra of the human lactoferrin molecules adsorbed on a silvered porous silicon (por-Si) from 10-6⁻10-18 M solutions. It was found that the por-Si template causes a negative surface potential of silver particles and their chemical resistivity to oxidation. These properties provided to attract positively charged lactoferrin molecules and prevent their interaction with metallic particles upon 473 nm laser excitation. The SERS spectra of lactoferrin adsorbed from 10-6 M solution were rather weak but a decrease of the concentration to 10-10 M led to an enormous growth of the SERS signal. This effect took place as oligomers of lactoferrin were broken down to monomeric units while its concentration was reduced. Oligomers are too large for a uniform overlap with electromagnetic field from silver particles. They cannot provide an intensive SERS signal from the top part of the molecules in contrast to monomers that can be completely covered by the electromagnetic field. The SERS spectra of lactoferrin at the 10-14 and 10-16 M concentrations were less intensive and started to change due to increasing contribution from the laser burned molecules. To prevent overheating the analyte molecules on the silvered por-Si were protected with graphene, which allowed the detection of lactoferrin adsorbed from the 10-18 M solution.


Asunto(s)
Técnicas Biosensibles , Grafito/química , Lactoferrina/aislamiento & purificación , Espectrometría Raman/métodos , Humanos , Lactoferrina/química , Porosidad , Silicio/química , Plata/química , Propiedades de Superficie
2.
Materials (Basel) ; 11(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883382

RESUMEN

The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

3.
Arch Biochem Biophys ; 638: 66-75, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29273432

RESUMEN

Investigations of short peptides that can be used in the next phase of synthetic HIV1 vaccine development are an urgent goal, as well as investigations of peptides that can be used in immunological tests with the aim to check the titer of antibodies against the alpha helix 1 from the first conserved region of HIV1 gp120 that are known to cause antibody-dependent cellular cytotoxicity (ADCC). The aim of this work was to study the structure of the NQ21 peptide corresponding to the less mutable part of the first conserved region of HIV1 gp120 (residues 94-114). The NQ21 peptide and its conjugate with biotin (biotin-NQ21) are absolutely alpha-helical in phosphate buffer solutions at pH = 6.8, 7.4 and 8.0, as well as in the dried form, according to the results of surface-enhanced Raman scattering (SERS) spectroscopy. Results of the native gel electrophoresis and thermal analysis under the control of spectrofluorometer and near UV circular dichroism (CD) showed that the peptide exists in form of octamers and tetramers at pH = 7.4, that is important information for further vaccine development. Strong signal of interacting Trp residues in oligomers in the far UV CD obscures the signal from secondary structure, but becomes less intensive during the heating.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/química , VIH-1/química , Péptidos/química , Vacunas contra el SIDA/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína , Espectrometría Raman
4.
Opt Express ; 25(25): 31651-31659, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29245836

RESUMEN

A highly sensitive photonic sensor based on a porous silicon ring resonator was developed and experimentally characterized. The photonic sensing structure was fabricated by exploiting a porous silicon double layer, where the top layer of a low porosity was used to form photonic elements by e-beam lithography and the bottom layer of a high porosity was used to confine light in the vertical direction. The sensing performance of the ring resonator sensor based on porous silicon was compared for the different resonances within the analyzed wavelength range both for transverse-electric and transverse-magnetic polarizations. We determined that a sensitivity up to 439 nm/RIU for low refractive index changes can be achieved depending on the optical field distribution given by each resonance/polarization.

5.
Nanoscale Res Lett ; 11(1): 262, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27209406

RESUMEN

Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10(-11) M.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA