Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 341: 123015, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008250

RESUMEN

GFNs have widespread applications but can harm marine systems due to excessive use and improper disposal. Algae-secreted EPS can mitigate nanomaterial harm, but their impact on GFN toxicity is understudied. Hence, in the present study, we investigated the toxicity of three GFNs, graphene oxide (GO), reduced graphene oxide (rGO), and graphene, in pristine and EPS-adsorbed forms in the marine alga Chlorella sp. At an environmentally relevant concentration of 1 mgL-1, all three GFNs induced considerable oxidative stress and impeded growth and photosynthetic activity of the algae. The order of the toxic potential followed GO > rGO > graphene. The various facets of adsorption of EPS (1:1 mixture of loosely bound, and tightly bound EPS) on GFNs were investigated through microscopy, surface chemical analyses, fluorescence quenching studies, and isotherm and kinetics studies. Amongst the pristine GFNs treated with algal cells, GO was found to exert the maximum negative effects on algal growth. Upon adsorption of EPS over the GFNs, a significant decline in growth inhibition was observed compared to the respective pristine forms which strongly correlated with reduced oxidative stress and enhanced photosynthetic parameters in the cells. The formation of a layer of eco-corona after interaction of GFNs with EPS possibly caused a barrier effect which in turn diminished their toxic potential. The findings from the present investigation offer valuable insights into the environmental toxicity of GFNs and show that the eco-corona formation may lessen the risk posed by these materials in the marine environment.


Asunto(s)
Chlorella , Grafito , Nanoestructuras , Grafito/toxicidad , Nanoestructuras/toxicidad , Estrés Oxidativo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37591457

RESUMEN

Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO2 + Fe3O4, Fe3O4 + ZnO, and ZnO + SiO2) and ternary (SiO2 + Fe3O4 + ZnO) combinations. The effects of metal ions from ZnO and Fe3O4 were investigated as well. The results observed from the study, showed that a significant amount of toxicity was contributed by the dissolved ions in the mixtures of the nanoparticles. Decreases in the cell viability, ROS generation, lipid peroxidation, antioxidant enzyme activity, and photosynthetic efficiency were analyzed. Among all the individual particles, ZnO NPs showed the maximum effects and increased the toxicities of the binary mixtures. The binary and ternary mixtures of the NPs clearly showed increased toxic effects in comparison with the individual entities. However, the ternary combination had lesser toxic effects than the binary combination of Fe3O4 + ZnO. The decline in cell viability and photosynthetic efficiency were strongly correlated with various oxidative stress biomarkers emphasizing the crucial role of reactive oxygen species in inducing the toxic effects. The findings from this study highlight the importance of evaluating the combinatorial effects of various metal oxide NPs as part of a comprehensive ecotoxicity assessment in freshwater microalgae.


Asunto(s)
Nanopartículas del Metal , Microalgas , Scenedesmus , Óxido de Zinc , Óxido de Zinc/toxicidad , Dióxido de Silicio/toxicidad , Óxidos , Nanopartículas del Metal/toxicidad , Antioxidantes , Agua Dulce , Iones
3.
Environ Sci Pollut Res Int ; 30(27): 70246-70259, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37145361

RESUMEN

Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.


Asunto(s)
Grafito , Microalgas , Nanotubos de Carbono , Scenedesmus , Contaminantes Químicos del Agua , Grafito/toxicidad , Microalgas/metabolismo , Scenedesmus/metabolismo , Nanotubos de Carbono/toxicidad , Estrés Oxidativo , Antioxidantes/metabolismo , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
4.
Plant Physiol Biochem ; 197: 107664, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36996635

RESUMEN

Both Bisphenol A (BPA) and polystyrene nanoplastics (PSNPs) are routinely found in several consumer products such as packaging materials, flame retardants, and cosmetics. The environment is seriously endangered by nano- and microplastics. In addition to harming aquatic life, nanoplastics (NPs) also bind to other pollutants, facilitating their dispersion in the environment and possibly promoting toxicity induced by these pollutants. The toxic effects of polystyrene nanoplastics (PS-NPs) and BPA were examined in this study, as well as the combined toxic impacts of these substances on the freshwater microalgae Scenedesmus obliquus. In addition, the exopolymeric substances (EPS) secreted by algae will interact with the pollutants modifying their physicochemical behaviour and fate. This work aimed to investigate how algal EPS alters the combined effects of BPA and PSNPs on the microalgae Scenedesmus obliquus. The algae were exposed to binary mixtures of BPA (2.5, 5, and 10 mg/L) and PSNPs (1 mg/L of plain, aminated, and carboxylated PSNPs) with EPS added to the natural freshwater medium. Cell viability, hydroxyl and superoxide radical generation, cell membrane permeability, antioxidant enzyme activity (catalase and superoxide dismutase), and photosynthetic pigment content were among the parameters studied to determine the toxicity. It was observed that for all the binary mixtures, the carboxylated PSNPs were most toxic when compared to the toxicity induced by the other PSNP particles investigated. The maximum damage was observed for the mixture of 10 mg/L of BPA with carboxylated PSNPs with a cell viability of 49%. When compared to the pristine mixtures, the EPS-containing mixtures induced significantly reduced toxic effects. A considerable decrease in reactive oxygen species levels, activity of antioxidant enzymes (SOD and CAT), and cell membrane damage was noted in the EPS-containing mixtures. Reduced concentrations of the reactive oxygen species led to improved photosynthetic pigment content in the cells.


Asunto(s)
Microplásticos , Scenedesmus , Contaminantes Químicos del Agua , Antioxidantes/metabolismo , Agua Dulce/química , Microplásticos/metabolismo , Microplásticos/farmacología , Nanopartículas/toxicidad , Nanopartículas/química , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Scenedesmus/efectos de los fármacos , Scenedesmus/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...