Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982401

RESUMEN

Store-operated Ca2+ entry (SOCE) is a mechanism that allows muscle fibers to recover external Ca2+, which first enters the cytoplasm and then, via SERCA pump, also refills the depleted intracellular stores (i.e., the sarcoplasmic reticulum, SR). We recently discovered that SOCE is mediated by Calcium Entry Units (CEUs), intracellular junctions formed by: (i) SR stacks containing STIM1; and (ii) I-band extensions of the transverse tubule (TT) containing Orai1. The number and size of CEUs increase during prolonged muscle activity, though the mechanisms underlying exercise-dependent formation of new CEUs remain to be elucidated. Here, we first subjected isolated extensor digitorum longus (EDL) muscles from wild type mice to an ex vivo exercise protocol and verified that functional CEUs can assemble also in the absence of blood supply and innervation. Then, we evaluated whether parameters that are influenced by exercise, such as temperature and pH, may influence the assembly of CEUs. Results collected indicate that higher temperature (36 °C vs. 25 °C) and lower pH (7.2 vs. 7.4) increase the percentage of fibers containing SR stacks, the n. of SR stacks/area, and the elongation of TTs at the I band. Functionally, assembly of CEUs at higher temperature (36 °C) or at lower pH (7.2) correlates with increased fatigue resistance of EDL muscles in the presence of extracellular Ca2+. Taken together, these results indicate that CEUs can assemble in isolated EDL muscles and that temperature and pH are two of the possible regulators of CEU formation.


Asunto(s)
Calcio , Músculo Esquelético , Ratones , Animales , Calcio/metabolismo , Temperatura , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Retículo Sarcoplasmático/metabolismo , Calcio de la Dieta , Concentración de Iones de Hidrógeno , Proteína ORAI1 , Molécula de Interacción Estromal 1
2.
Curr Opin Pharmacol ; 68: 102347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36608411

RESUMEN

Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.


Asunto(s)
Calcio , Miopatías Estructurales Congénitas , Humanos , Calcio/metabolismo , Transporte Iónico , Mutación , Homeostasis , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo
3.
Front Physiol ; 13: 1033300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311237

RESUMEN

Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.

4.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409132

RESUMEN

Exertional heat stroke (HS) is a hyperthermic crisis triggered by an excessive accumulation of Ca2+ in skeletal muscle fibers. We demonstrated that exercise leads to the formation of calcium entry units (CEUs), which are intracellular junctions that reduce muscle fatigue by promoting the recovery of extracellular Ca2+ via store-operated Ca2+ entry (SOCE). Here, we tested the hypothesis that exercise-induced assembly of CEUs may increase the risk of HS when physical activity is performed in adverse environmental conditions (high temperature and humidity). Adult mice were: (a) first, divided into three experimental groups: control, trained-1 month (voluntary running in wheel cages), and acutely exercised-1 h (incremental treadmill run); and (b) then subjected to an exertional stress (ES) protocol, a treadmill run in an environmental chamber at 34 °C and 40% humidity. The internal temperature of the mice at the end of the ES was higher in both pre-exercised groups. During an ES ex-vivo protocol, extensor digitorum longus(EDL) muscles from the trained-1 month and exercised-1 h mice generated greater basal tension than in the control and were those that contained a greater number of CEUs, assessed by electron microscopy. The data collected suggest that the entry of Ca2+ from extracellular space via CEUs could contribute to exertional HS when exercise is performed in adverse environmental conditions.


Asunto(s)
Temperatura Corporal , Músculo Esquelético , Animales , Calcio , Ratones , Fatiga Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA