Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Rep ; 14(1): 14456, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914602

RESUMEN

In recent decades, the food system has been faced with the significant problem of increasing food waste. Therefore, the feed industry, supported by scientific research, is attempting to valorise the use of discarded biomass as co-products for the livestock sector, in line with EU objectives. In parallel, the search for functional products that can ensure animal health and performances is a common fundamental goal for both animal husbandry and feeding. In this context, camelina cake (CAMC), cardoon cake (CC) and cardoon meal (CM), due valuable nutritional profile, represent prospective alternatives. Therefore, the aim of this work was to investigate the antioxidant activity of CAMC, CC and CM following in vitro digestion using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Total phenolic content (TPC) and angiotensin converting enzyme (ACE) inhibitory activity, actively involved in modulating antioxidant properties, were also studied. Further, a peptidomic analysis was adopted to substantiate the presence of bioactive peptides after in vitro digestion. The results obtained confirmed an interesting nutritional profile of CAMC, CC and CM and relevant antioxidant and ACE inhibitory activities. In particular, considering antioxidant profile, CM and CC revealed a significantly higher (10969.80 ± 18.93 mg TE/100 g and 10451.40 ± 149.17 mg TE/100 g, respectively; p < 0.05) ABTS value than CAMC (9511.18 ± 315.29 mg TE/100 g); a trend also confirmed with the FRAP assay (306.74 ± 5.68 mg FeSO4/100 g; 272.84 ± 11.02 mg FeSO4/100 g; 103.84 ± 3.27 mg FeSO4/100 g, for CC, CM and CAMC, respectively). Similar results were obtained for TPC, demonstrating the involvement of phenols in modulating antioxidant activity. Finally, CAMC was found to have a higher ACE inhibitory activity (40.34 ± 10.11%) than the other matrices. Furthermore, potentially bioactive peptides associated with ACE inhibitory, anti-hypertensive, anti-cancer, antimicrobial, antiviral, antithrombotic, DPP-IV inhibitory and PEP-inhibitory activities were identified in CAMC. This profile was broader than that of CC and CM. The presence of such peptides corroborates the antioxidant and ACE profile of the sample. Although the data obtained report the important antioxidant profile of CAMC, CC, and CM and support their possible use, future investigations, particularly in vivo trials will be critical to evaluate and further investigate their effects on the health and performance of farm animals.


Asunto(s)
Antioxidantes , Cynara , Antioxidantes/farmacología , Antioxidantes/análisis , Antioxidantes/química , Cynara/química , Brassicaceae/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Fenoles/análisis , Fenoles/química , Péptidos/química , Péptidos/análisis , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alimentación Animal/análisis , Proteómica/métodos
2.
Nutrients ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892606

RESUMEN

The prevalence of anaemia in India remains high in children, especially those in rural areas, and in women of childbearing age, and its impairment of neurological development can have serious lifelong effects. It is concerning that the most recent official data (2019-21) indicate an increased prevalence compared with 2015-16. There is also considerable variability in childhood anaemia between Indian states with socioeconomic factors, such as wealth and education contributing to the risk of anaemia among adolescent women and their children. Dietary iron deficiency is often regarded as the main contributor to anaemia but increasing evidence accumulated from the authors' ongoing literature database coupled with recent literature research suggests that it has a multifactorial aetiology, some of which is not related to nutrition. This narrative review focused on these multifactorial issues, notably the contribution of vitamin B12/folate deficiency, which also has a high prevalence in India. It was also noted that the dietary intake of bioavailable iron remains an important contributor for reducing anaemia, and the role of millets as an improved iron source compared to traditional staple cereals is briefly discussed. The overall conclusion is that anaemia has a multifactorial aetiology requiring multifactorial assessment that must include assessment of vitamin B12 status.


Asunto(s)
Anemia , Deficiencia de Ácido Fólico , Deficiencia de Vitamina B 12 , Humanos , India/epidemiología , Prevalencia , Deficiencia de Vitamina B 12/epidemiología , Femenino , Anemia/epidemiología , Anemia/etiología , Deficiencia de Ácido Fólico/epidemiología , Adolescente , Niño , Anemia Ferropénica/epidemiología , Anemia Ferropénica/etiología , Masculino , Hierro de la Dieta/administración & dosificación , Estado Nutricional , Adulto , Factores de Riesgo , Dieta/efectos adversos , Vitamina B 12/administración & dosificación , Vitamina B 12/sangre
3.
Sci Rep ; 13(1): 21595, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062040

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFA), such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are reported to beneficially affect the intestinal immunity. The biological pathways modulated by n-3 PUFA during an infection, at the level of intestinal epithelial barrier remain elusive. To address this gap, we investigated the proteomic changes induced by n-3 PUFA in porcine enterocyte cell line (IPEC-J2), in the presence and absence of lipopolysaccharide (LPS) stress conditions using shotgun proteomics analysis integrated with RNA-sequencing technology. A total of 33, 85, and 88 differentially abundant proteins (DAPs) were identified in cells exposed to n-3 PUFA (DHA:EPA), LPS, and n-3 PUFA treatment followed by LPS stimulation, respectively. Functional annotation and pathway analysis of DAPs revealed the modulation of central carbon metabolism, including the glycolysis/gluconeogenesis, pentose phosphate pathway, and oxidative phosphorylation processes. Specifically, LPS caused metabolic dysregulation in enterocytes, which was abated upon prior treatment with n-3 PUFA. Besides, n-3 PUFA supplementation facilitated enterocyte development and lipid homeostasis. Altogether, this work for the first time comprehensively described the biological pathways regulated by n-3 PUFA in enterocytes, particularly during endotoxin-stimulated metabolic dysregulation. Additionally, this study may provide nutritional biomarkers in monitoring the intestinal health of human and animals on n-3 PUFA-based diets.


Asunto(s)
Ácidos Grasos Omega-3 , Humanos , Animales , Porcinos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Enterocitos/metabolismo , Endotoxinas , Lipopolisacáridos/farmacología , Proteómica , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos/metabolismo
4.
Foods ; 12(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37372574

RESUMEN

The present Special Issue features three broad areas related to meat: meat and human health, the effects of animals' diets on the nutritional characteristics of meat, and consumers' attitudes about buying and consuming cell-based meat [...].

5.
Foods ; 12(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36766131

RESUMEN

The growth of the world population has prompted research to investigate new food/feed alternatives. Hemp-based products can be considered excellent candidates. Hemp (Cannabis sativa L.) is an environmentally sustainable plant widespread worldwide. Following the reintroduction of its cultivation, hemp is attracting interest, especially in the food/feed industry. To date, scientific research has mainly focused on its nutritional aspect. Therefore, the aim of the work was also to investigate the functional profile (total phenolic content (TPC) and antioxidant activity (Ferric- reducing antioxidant power (FRAP) and 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)) of hemp-based products (hempseeds (HSs), flowers, and HS protein extract), following methanol extraction and in vitro digestion, to study the behaviour of the molecules involved. The results show an interesting nutritional value, even when compared to matrices used in the food/feed industry, such as soy and flaxseeds. The functional profile revealed a very interesting TPC following methanol extraction for HSs, flowers, and HS protein extract, respectively, (550.3 ± 28.27; 2982.8 ± 167.78; and 568.9 ± 34.18 mg Tannic Acid Equivalent (TAE)/100 g). This trend was also confirmed for FRAP (50.9 ± 4.30; 123.6 ± 8.08; and 29.73 ± 1.32 mg Ascorbic Acid Equivalent (AAE)/100 g), recording values similar/higher than soy protein extract and flaxseeds (17.4 ± 1.55; and 10.4 ± 0.44 mg AAE/100 g). The results were also maintained following physiological digestion. These results, although promising, need further investigation, confirming what has been observed with different antioxidant activity assays and identifying individual molecules involved in functional pathways. This information will be necessary to gain a better understanding of the functional characteristics of these matrices for use in food/feed formulations.

6.
Foods ; 11(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35885304

RESUMEN

Red meat has been an important part of the diet throughout human evolution. Overall, when included as part of a healthy and varied diet, red meat can provide a rich source of bioavailable essential nutrients and high biological value protein. The present paper discusses the dietary role/impact of red and processed meat, with some reference to the relative effect of white meat, in a range of chronic conditions including iron-deficiency anaemia, cardiovascular diseases (CVD), cancer and dementia. The role of red meat in relation to key physiological conditions such as maintaining skeletal muscle and bone health and during pregnancy is also discussed. The inclusion of lean red meat in a healthy, varied diet may be beneficial during these critical conditions. There is however increasing evidence that red meat and especially processed meat are associated with increased risks of CVD, cancer and dementia whereas white meat is neutral or associated with a lower risk. There now seems little doubt that processed and unprocessed meat should have separate public dietary guidance.

7.
Foods ; 11(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35804798

RESUMEN

Short chain fatty acids (SCFAs), especially butyrate (BUT), are known to promote intestinal health, but their role in the protection of intestinal barrier integrity is poorly characterized. The aim of the study was to set up an in vitro model of human colon epithelium using HT29-MTX-E12 cells to delineate the potential role of SCFAs under stress conditions. Accordingly, the HT29-MTX-E12 cells were differentiated for 42 days and subsequently exposed to dextran sulphate sodium (DSS). Further, the effects of BUT or its mixture with acetate and propionate (SCFAs-MIX) were tested to study proliferation, epithelial integrity and mucus production. The results showed that the concentration of 10% DSS for 24 h decreased the TEER about 50% compared to the control in HT29-MTX-E12 cells. The pre-treatment on HT29-MTX-E12 cells with BUT or SCFAs-MIX at specific concentrations significantly (p < 0.05) reduced the DSS-induced damage on epithelial cell integrity and permeability. Further, the treatment with specific concentrations of BUT and SCFAs-MIX for 24 h significantly promoted ZO-1, MUC2 and MUC5AC mRNA expression (p < 0.005). The present study demonstrated the suitability of HT29-MTX-E12 cells treated with DSS as an in vitro stress model of inflammatory bowel disease, which enabled us to understand the effect of bioactive SCFAs on the intestinal barrier.

8.
Antioxidants (Basel) ; 11(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35624856

RESUMEN

Algae and cyanobacteria, other than their nutritional value, possess different beneficial properties, including antioxidant and antimicrobial ones. Therefore, they can be considered functional ingredients in animal feed and natural substitutes for antibiotics. The aim of this study was to evaluate the antioxidant and antimicrobial capacity against porcine O138 E. coli of Ascophyllum nodosum, Chlorella vulgaris, Lithotamnium calcareum, Schizochytrium spp. as algal species and Arthrospira platensis as cyanobacteria. The antioxidant capacity was determined by ABTS Radical Cation Decolorization Assay testing at three different concentrations (100%; 75%; 50%). The growth inhibition effect of the extracts at concentrations of 25%, 12.5%, 6%, 3% and 1.5% against porcine O138 E. coli was genetically characterized by PCR to detect the presence of major virulence factors; this was evaluated by following the microdilution bacterial growth method. The ABTS assay disclosed that Ascophyllum nodosum was the compound with the major antioxidant properties (57.75 ± 1.44 percentage of inhibition; p < 0.0001). All the extracts tested showed growth inhibition activity at a concentration of 25%. Among all extracts, A. nodosum was the most effective, showing a significant growth inhibition of E. coli; in particular, the log10 cells/mL of E. coli used as a control resulted in a significantly higher concentration of 25% and 12.5% after 4 h (8.45 ± 0.036 and 7.22 ± 0.025 log10 cells/mL, respectively; p < 0.005). This also suggests a dose-dependent relationship between the inhibitory activity and the concentration. Also, a synergistic effect was observed on antioxidant activity for the combination of Ascophyllum nodosum and Lithotamnium calcareum (p < 0.0001). Moreover, to determine if this combination could affect the viability of the IPEC-J2 cells under the normal or stress condition, the viability and membrane integrity were tested, disclosing that the combination mitigated the oxidative stress experimentally induced by increasing the cell viability. In conclusion, the results obtained highlight that the bioactive compounds of algal species are able to exert antioxidant capacity and modulate O138 E. coli growth. Also, the combination of Ascophyllum nodosum and Lithotamnium calcareum species can enhance their bioactivity, making them a promising functional feed additive and a suitable alternative to antibiotics.

9.
J Anim Sci Biotechnol ; 13(1): 40, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35399093

RESUMEN

The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.

10.
Microorganisms ; 9(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34442665

RESUMEN

Limosilactobacillus reuteri and Lactiplantibacillus plantarum strains, previously isolated from weaned piglets, were considered for the evaluation of their adhesive characteristics. Lactobacilli were treated with LiCl in order to remove the surface protein layer, and probiotic activity was compared with those of untreated strains. The autoaggregation, co-aggregation to E. coli F18+, and adhesive abilities of LiCl-treated Limosilactobacillus reuteri and Lactiplantibacillus plantarum were significantly inhibited (p < 0.05) compared with the respective untreated strain. The hydrophobic and basic phenotypes were observed due to the strong affinity to chloroform and low adherence to ethyl acetate. In particular, L. plantarum showed higher hydrophobicity compared to L. reuteri, which may reflect their different colonizing ability. After treatment with LiCl to remove surface proteins, the adherence capabilities of L. reuteri and L. casei on IPEC-J2 cells decreased significantly (p < 0.001) and L. reuteri adhered more frequently. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that both L. reuteri and L. plantarum had several bands ranging from 20 to 100 kDa. Two-dimensional gel electrophoresis showed an acidic profile of the surface-layer polypeptides for both bacterial strains, and more studies are needed to characterize their profile and functions. The results confirm the pivotal role of surface proteins in the probiotic potential of L. reuteri and L. plantarum.

11.
Animals (Basel) ; 11(6)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204784

RESUMEN

The effects of Lactobacillus plantarum and Lactobacillus reuteri and their combination were assessed in weaned piglets. Three hundred and fifty weaned piglets (Landrace × Large White), balanced in terms of weight and sex, were randomly allotted to four experimental groups (25 pens, 14 piglets/pen). Piglets were fed a basal control diet (CTRL, six pens) and a treatment diet supplemented with 2 × 108 CFU/g of L. plantarum (PLA, 6 pens), 2 × 108 CFU/g L. reuteri (REU, six pens) and the combination of both bacterial strains (1 × 108 CFU/g of L. plantarum combined with 1 × 108 CFU/g of L. reuteri, P+R, 7 pens) for 28 days. Body weight and feed intake were recorded weekly. Diarrhoea occurrence was assessed weekly by the faecal score (0-3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets per pen for microbiological analyses and serum samples were collected from two piglets per pen for serum metabolic profiling. Treatments significantly reduced diarrhoea occurrence and decreased the average faecal score (0.94 ± 0.08 CTRL, 0.31 ± 0.08 PLA, 0.45 ± 0.08 REU, 0.27 ± 0.08 P+R; p < 0.05). The PLA group registered the lowest number of diarrhoea cases compared to other groups (20 cases CTRL, 5 cases PLA, 8 cases REU, 10 cases P+R; p < 0.01). After 28 days, the globulin serum level increased in PLA compared to the other groups (24.91 ± 1.09 g/L CTRL, 28.89 ± 1.03 g/L PLA, 25.91 ± 1.03 g/L REU, 25.31 ± 1.03 g/L P+R; p < 0.05). L. plantarum and L. reuteri could thus be considered as interesting functional additives to prevent diarrhoea occurrence in weaned piglets.

12.
Animals (Basel) ; 10(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105748

RESUMEN

In pig livestock, alternatives to in-feed antibiotics are needed to control enteric infections. Plant extracts such as tannins can represent an alternative as a natural source of functional compounds. The aim of this study was to evaluate the in vitro digestibility and in vivo effects of oral supplementation of combined chestnut (Ch) and quebracho (Qu) tannins in order to establish if they can induce a positive effect on weaned piglets' performance, metabolic status and fecal parameters. In vitro digestibility (dry matter, DM) of diets was calculated using a multi-step enzymatic technique. In vitro digested diet samples were further tested on an intestinal porcine enterocyte cell line (IPEC-J2). Weaned piglets (n = 120; 28 ± 2 day old) were randomly allotted to two groups (12 pens in total with 10 pigs per pen): control (Ctrl) and treatment (Ch/Qu). After one week of adaptation (day 0), 35-day-old piglets in the Ctrl group were fed a Ctrl diet and the Ch/Qu group were fed with 1.25% Ch/Qu for 40 days. Body weight and feed intake per pen were recorded weekly. At day 40, blood and fecal samples were collected. Principal metabolic parameters were evaluated from blood samples by enzymatic colorimetric analysis. Total phenolic compounds, urea, and ammonia in feces were analyzed (Megazyme International, Bray, Ireland). In vitro digestibility and cell viability assays showed that the inclusion of 1.25% Ch/Qu slightly reduced diet digestibility compared with the Ctrl diet, while intestinal cell viability was not altered with low concentrations of Ch/Qu digesta compared with Ctrl. In vivo results did not show any adverse effects of Ch/Qu on feed intake and growth performance, confirming that dietary inclusion of Ch/Qu at a concentration of 1.25% did not impair animal performance. The decreased diet DM digestibility in the Ch/Qu diet may cause increased serum concentration of albumin (Ctrl: 19.30 ± 0.88; Ch/Qu: 23.05 ± 0.88) and albumin/globulin ratio (Ctrl: 0.58 ± 0.04; Ch/Qu: 0.82 ± 0.04), but decreased creatinine (Ctrl: 78.92 ± 4.18; Ch/Qu: 54.82 ± 4.18) and urea (Ctrl: 2.18 ± 0.19; Ch/Qu: 0.95 ± 0.19) compared with Ctrl. Pigs in the Ch/Qu group contained higher (p < 0.05) concentrations of fecal phenolic compounds and nitrogen than the Ctrl group, while fecal ammonia and urea were not affected by tannins. In conclusion, Ch/Qu tannin supplementation did not influence growth performance. Although lower digestibility was observed in the diet supplemented with Ch/Qu tannins, Ch/Qu supplementation did not show any adverse effect on intestinal epithelial cell viability.

13.
Animals (Basel) ; 10(6)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486441

RESUMEN

Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2) in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25-50 µM) (p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2; 10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h), DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05). Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells. Increased intracellular mitochondrial activity and cell membrane integrity by ω-3 PUFAs can play a role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.

14.
Animals (Basel) ; 10(5)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366030

RESUMEN

Phytobiotics are usually tested in feed and throughout the production cycle. However, it could be beneficial to evaluate their effects when administered only during critical moments, such as changes in feeding phases. The aim of the trial was to investigate the effect of a commercial plant extract (PE; IQV-10-P01, InQpharm Animal Health, Kuala Lumpur, Malaysia) on growth performance, blood antiradical activity and cecal microbiome when administered in drinking water to broiler chickens during the post-hatching phase and at each change of diet. In the experiment, 480 1-day-old male broiler chicks were assigned to two groups in a 50-day trial. Broilers received drinking water (C) or drinking water plus PE (T) at a rate of 2 mL/L on days 0 to 4, 10-11 and 20-21. PE did not affect performance and water intake, while total antiradical activity was improved (p < 0.05). A greater abundance of lactic acid bacteria (false discovery rate (FDR) < 0.05) was found in the T group and the result was confirmed at a lower taxonomic level with higher Lactobacillaceae abundance (FDR < 0.05). Our findings suggest that PE administration during critical moments of the production cycle of broiler chickens may exert beneficial effects at a systemic level and on gut microbial ecology.

15.
Animals (Basel) ; 10(2)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979207

RESUMEN

Quebracho (Qu) and chestnut (Ch) are natural sources of tannins and they are currently used in animal nutrition as feed ingredients. However, to date the bio-accessibility, antimicrobial, antioxidant, and intestinal epithelial cell stimulatory doses of Qu and Ch have not been determined. Our study investigates the antioxidant and E. coli F4+ and F18+ growth inhibitory activity of Qu, Ch, and their combinations after solubilization in water (to evaluate the already bio-accessible molecules) and after simulated gastro-intestinal digestion in vitro. The effect of an in vitro digested Ch and Qu combination was also tested on intestinal epithelial IPEC-J2 cells experimentally stressed with hydrogen peroxide (H2O2) and Dextran Sodium Sulfate (DSS). The results showed that undigested Qu and Ch alone, and in combination, exerted a valuable antioxidant capacity and E. coli F4+ and F18+ growth inhibitory activity. The concentration of 1200 µg/mL exhibited the highest E. coli growth inhibitory activity for all the samples tested. In addition, after in vitro digestion, Qu and Qu50%-Ch50% maintained E. coli growth inhibitory activity and a modest antioxidant capacity. Three hours pre-treatment with in vitro digested Qu50%-Ch50% counteracted the H2O2 and DSS experimentally-induced stress in the intestinal IPEC-J2 cells. Ch and Qu tannin extracts, particularly when combined, may exert E. coli F4+ and F18+ growth inhibitory activity and valuable antioxidant and cell viability modulation activities.

16.
J Dairy Sci ; 102(12): 10760-10771, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31521344

RESUMEN

Over the past decades, several studies investigated the health-promoting functions of milk peptides. However, to date many hurdles still exist regarding the widespread use of milk-derived bioactive peptides, as they may be degraded during gastrointestinal digestion. Thus, the aim of our study was to in vitro digest intact whey protein isolate (WPI) and casein proteins (CNP), mimicking in vivo digestion, to investigate their bioactive effects and to identify the potential peptides involved. Whey protein isolate and CNP were digested using a pepsin-pancreatin protocol and ultra-filtered (3-kDa cutoff membrane). A permeate (<3 kDa) and a retentate (>3 kDa) were obtained. Soy protein was included as a control (CTR). Angiotensin-1-converting enzyme inhibitory (ACE1-I) and antioxidant activity (AOX) were assessed and compared with those observed in undigested proteins and CTR. Furthermore, the permeate was characterized by nano-liquid chromatography electrospray ionization tandem mass spectrometry (LC-nano ESI MS/MS) using a shotgun peptidomic approach, and retentate was further digested with trypsin and analyzed by MS using a shotgun proteomic approach to identify potentially bioactive peptides. Further, the effects of WPI, CNP, and CTR retentate on cell metabolic activity and on mucus production (MUC5AC and MUC2 gene expression) were assessed in intestinal goblet HT29-MTX-E12 cells. Results showed that WPI permeate induced a significant ACE1-I inhibitory effect [49.2 ± 0.64% (SEM)] compared with undigested WPI, CNP permeate, and retentate or CTR permeate (10.40 ± 1.07%). A significant increase in AOX (1.58 ± 0.04 and 1.61 ± 0.02 µmol of trolox AOX equivalents per mg of protein, respectively) upon digestion was found in WPI. Potentially bioactive peptides associated with ACE1-I and antihypertensive effects were identified in WPI permeate and CNP retentate. At specific concentrations, WPI, CNP, and CTR retentate were able to stimulate metabolic activity in HT29-MTX-E12 cells. Expression of MUC5AC was increased by CNP retentate and unaltered by WPI retentate; MUC2 expression was significantly increased by 0.33 mg/g of CNP and reduced by 1.33 mg/g of CNP. Our results confirm that milk proteins may be rich sources of bioactive compounds, with the greatest beneficial potential of CNP at the intestinal goblet cell level.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Antioxidantes/metabolismo , Digestión , Proteínas de la Leche/metabolismo , Mucinas/genética , Peptidil-Dipeptidasa A/metabolismo , Animales , Caseínas/metabolismo , Cromatografía Liquida , Expresión Génica , Células HT29 , Humanos , Leche/metabolismo , Proteínas de Soja/metabolismo , Espectrometría de Masas en Tándem , Suero Lácteo/metabolismo
17.
J Dairy Sci ; 102(2): 929-942, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30591343

RESUMEN

Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.


Asunto(s)
Productos Lácteos/análisis , Digestión , Absorción Intestinal/fisiología , Proteínas de la Leche/metabolismo , Péptidos/metabolismo , Animales , Disponibilidad Biológica , Humanos , Modelos Biológicos
18.
Toxins (Basel) ; 10(10)2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332757

RESUMEN

The aim of this study was to evaluate the potential use of an e-nose in combination with lateral flow immunoassays for rapid aflatoxin and fumonisin occurrence/co-occurrence detection in maize samples. For this purpose, 161 samples of corn have been used. Below the regulatory limits, single-contaminated, and co-contaminated samples were classified according to the detection ranges established for commercial lateral flow immunoassays (LFIAs) for mycotoxin determination. Correspondence between methods was evaluated by discriminant function analysis (DFA) procedures using IBM SPSS Statistics 22. Stepwise variable selection was done to select the e-nose sensors for classifying samples by DFA. The overall leave-out-one cross-validated percentage of samples correctly classified by the eight-variate DFA model for aflatoxin was 81%. The overall leave-out-one cross-validated percentage of samples correctly classified by the seven-variate DFA model for fumonisin was 85%. The overall leave-out-one cross-validated percentage of samples correctly classified by the nine-variate DFA model for the three classes of contamination (below the regulatory limits, single-contaminated, co-contaminated) was 65%. Therefore, even though an exhaustive evaluation will require a larger dataset to perform a validation procedure, an electronic nose (e-nose) seems to be a promising rapid/screening method to detect contamination by aflatoxin, fumonisin, or both in maize kernel stocks.


Asunto(s)
Aflatoxinas/análisis , Contaminación de Alimentos/análisis , Fumonisinas/análisis , Zea mays , Aflatoxinas/inmunología , Anticuerpos Inmovilizados/inmunología , Nariz Electrónica , Fumonisinas/inmunología , Inmunoensayo
19.
Sci Rep ; 8(1): 5026, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29568003

RESUMEN

Epidemiological studies show an inverse association between dairy consumption and blood pressure (BP) but there are few data on the postprandial effects of milk proteins. This study examined their effects, compared to maltodextrin, on postprandial BP and other CVD risk markers in volunteers with mild and pre-hypertension over an 8 h period. In this double-blinded, randomised, cross-over, controlled study 27 adults ingested a high-fat, isoenergetic breakfast and lunch with 28 g whey protein, 28 g Ca-caseinate or 27 g maltodextrin. Whey protein reduced systolic BP compared with Ca-caseinate (-15.2 ± 13.6 mmHg) and maltodextrin (-23.4 ± 10.5 mmHg) up to 5 h post-ingestion. There was an improvement in arterial stiffness after whey protein compared with maltodextrin (incremental Area Under the Curve- iAUC0-8h: +14.4 ± 6.2%). Despite similar glucose levels after both whey protein and Ca-caseinate, whey protein induced a higher insulin response than Ca-caseinate (iAUC0-8h: +219.5 ± 54.6 pmol/L). Ca-caseinate induced less suppression of non-esterified fatty acids than whey protein (iAUC0-5h: -58.9 ± 135.5 µmol/L) and maltodextrin (iAUC0-5h: -106.9 ± 89.4 µmol/L) and induced a smaller postprandial triacylglycerol response than whey protein (iAUC0-8h: -1.68 ± 0.6 mmol/L). Milk proteins co-ingestion with high-fat meals may have the potential to maintain or improve CVD risk factors.


Asunto(s)
Caseínas/administración & dosificación , Suplementos Dietéticos , Hipertensión/dietoterapia , Prehipertensión/dietoterapia , Triglicéridos/sangre , Proteína de Suero de Leche/administración & dosificación , Adulto , Anciano , Presión Sanguínea/efectos de los fármacos , Determinación de la Presión Sanguínea , Estudios Cruzados , Dieta Alta en Grasa/efectos adversos , Método Doble Ciego , Femenino , Humanos , Hipertensión/sangre , Hipertensión/etiología , Masculino , Persona de Mediana Edad , Polisacáridos/administración & dosificación , Periodo Posprandial/efectos de los fármacos , Prehipertensión/sangre , Prehipertensión/etiología , Factores de Riesgo , Rigidez Vascular/efectos de los fármacos
20.
Nutrients ; 9(12)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29236035

RESUMEN

The consumption of supplements based on dairy or plant proteins may be associated with bioactive potential, including angiotensin-1-converting enzyme inhibitory (ACE-1i) activity, which is linked with blood pressure reduction in vivo. To gain insight into this proposed mechanism, the ACE-1i potential of protein-based supplements, including a selection of dairy (n = 10) and plant (n = 5) proteins were in vitro digested. The total digest was filtered and permeate and retentate were obtained. ACE-1i activity was measured as the ability of proteins (pre-digestion, 'gastric', permeate, and retentate) to decrease the hydrolysis of furanacroloyl-Phe-Glu-Glu (FAPGG) substrate for the ACE-1 enzyme. Permeate and retentate of dairy proteins exerted a significantly higher ACE-1i activity (mean of 10 proteins: 27.05 ± 0.2% and 20.7 ± 0.2%, respectively) compared with pre-digestion dairy proteins (16.7 ± 0.3%). Plant protein exhibited high ACE-1i in 'gastric' and retentate fractions (mean of five proteins: 54.9 ± 0.6% and 35.7 ± 0.6%, respectively). The comparison of the in vitro ACE-1i activity of dairy and plant proteins could provide valuable knowledge regarding their specific bioactivities, which could inform their use in the formulation of specific functional supplements that would require testing for blood pressure control in human randomly-controlled studies.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Proteínas de la Leche/farmacología , Proteínas de Plantas/farmacología , Animales , Suplementos Dietéticos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Humanos , Hidrólisis , Peptidil-Dipeptidasa A/metabolismo , Proteolisis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...