Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chemosphere ; 343: 140207, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734507

RESUMEN

Large amounts of consumer products containing halogenated flame retardants (HFRs) are disposed of annually in landfills, which may lead to significant releases of these semi-volatile contaminants into the environment. During their foraging activities in landfills, gulls can be exposed to elevated levels of HFRs in air. Ring-billed gulls (Larus delawarensis) breeding in the densely populated Montreal area (QC, Canada) are significantly exposed to air levels of polybrominated diphenyl ethers (PBDEs) in or in the vicinity of landfills. However, no information is currently available on the specific characteristics of these landfills that can modulate the atmospheric exposure of ring-billed gulls to HFRs. The objective of this study was to investigate how atmospheric exposure in ring-billed gulls to PBDEs and other HFRs is influenced by selected landfill characteristics (i.e., daily cover materials, waste types and tonnage). Miniature passive air samplers (PASs) combined with GPS dataloggers were deployed for ten days during six years on the back of wild-caught ring-billed gulls breeding in the Montreal area. Atmospheric levels of several PBDEs and other HFRs determined in PASs were found to increase with the presence probability of gulls in the two largest landfills using automotive shredder residues as daily cover material. Weather variables including relative humidity and wind speed had a weak influence on atmospheric levels of HFRs in the bird-borne PASs. Our results suggest that automotive shredder residues represent a significant emission source of HFRs into the air of landfills, thus influencing atmospheric exposure of gulls and other birds foraging in these sites.

2.
Sci Total Environ ; 860: 160526, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36471522

RESUMEN

Urban-adapted gulls can be exposed to flame retardants while foraging in landfills where elevated concentrations of polybrominated diphenyl ethers (PBDEs) and other halogenated flame retardants (HFRs) have frequently been measured in air. However, the contribution of atmospheric exposure has largely been overlooked compared to dietary exposure in birds and other wildlife. The overall objective of this study was to investigate the contribution of atmospheric exposure pathways relative to diet for PBDEs and other HFRs in ring-billed gulls (Larus delawarensis) nesting in the densely populated Montreal area (QC, Canada). Miniature passive air samplers (PASs) were deployed on the back of wild-caught ring-billed gulls for ten days. Concentrations of PBDEs and other HFRs were determined in PASs carried by ring-billed gulls as well as their lungs, stomach content, liver, preen oil, and onto the surface of their feathers. We evaluated the atmospheric and dietary exposure routes for the most abundant HFRs in samples using a structural equation model implemented in a Bayesian framework. Results indicated that lung concentrations of BDE-28 increased with its levels in air determined using bird-borne PASs. No association was found between BDE-28 concentrations in lungs and liver, whereas BDE-209 concentrations in liver increased with those in lungs. Moreover, BDE-28 and -47 concentrations in liver increased with those on feather surface, while liver BDE-47 concentrations were also positively related with those in stomach content. These findings suggested that, in addition to dietary exposure, atmospheric exposure pathways through inhalation and co-ingestion during feather maintenance (preening) significantly contribute to the accumulation of PBDEs in liver of ring-billed gulls. Atmospheric exposure to HFRs should therefore be considered in future landfill-foraging wildlife species as a potential exposure route compared to the traditional dietary exposure pathway.


Asunto(s)
Charadriiformes , Retardadores de Llama , Animales , Charadriiformes/metabolismo , Éteres Difenilos Halogenados/análisis , Retardadores de Llama/análisis , Teorema de Bayes , Aves/metabolismo , Animales Salvajes/metabolismo , Monitoreo del Ambiente
3.
Ecol Appl ; 32(2): e2497, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34783416

RESUMEN

Gulls are ubiquitous in urban areas due to a growing reliance on anthropogenic feeding sites, which has led to changes in their abundance, distribution, and migration ecology, with implications for disease transmission. Gulls offer a valuable model for testing hypotheses regarding the dynamics of influenza A virus (IAV) - for which gulls are a natural reservoir in urban areas. We sampled sympatric populations of Ring-billed (Larus delawarensis), Herring (L. argentatus), and Great Black-backed Gulls (L. marinus) along the densely populated Atlantic rim of North America to understand how IAV transmission is influenced by drivers such as annual cycle, host species, age, habitat type, and their interplay. We found that horizontal transmission, rather than vertical transmission, played an outsized role in the amplification of IAV due to the convergence of gulls from different breeding grounds and age classes. We detected overlapping effects of age and season in our prevalence model, identifying juveniles during autumn as the primary drivers of the seasonal epidemic in gulls. Gulls accumulated immunity over their lifespan, however short-term fluctuations in seroprevalence were observed, suggesting that migration may impose limits on the immune system to maintain circulating antibodies. We found that gulls in coastal urban habitats had higher viral prevalence than gulls captured inland, correlating with higher richness of waterbird species along the coast, a mechanism supported by our movement data. The peak in viral prevalence in newly fledged gulls that are capable of long-distance movement has important implications for the spread of pathogens to novel hosts during the migratory season as well as for human health as gulls increasingly utilize urban habitats.


Asunto(s)
Charadriiformes , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Factores de Edad , Animales , Charadriiformes/virología , Ecosistema , Infecciones por Orthomyxoviridae/veterinaria , Estaciones del Año , Estudios Seroepidemiológicos
4.
Environ Pollut ; 271: 116396, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33535362

RESUMEN

Landfills represent important sources of local emissions of organic contaminants, including halogenated (HFR) and organophosphate ester (OPE) flame retardants used in a large variety of consumer products. Gulls foraging in landfills may be exposed to elevated atmospheric concentrations of HFRs and OPEs that may vary spatially and temporally within a landfill site, thus modulating their exposure. The objective of the present study was to investigate the spatial and temporal variability of HFR and OPE concentrations in air samples collected from a major landfill in the Montreal area (QC, Canada) that is frequently visited by gulls for foraging. Miniature stationary passive air samplers (PASs) and high-volume active air samplers (AASs) were deployed in six different areas within this landfill site for 34 days to collect HFRs and OPEs in air. During the same period, wild-caught ring-billed gulls (Larus delawarensis) were equipped on their back with a similar miniature PAS that was deployed in the landfill along with a GPS datalogger to monitor their movements for ten days. Elevated concentrations of certain OPEs (e.g., tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate) and brominated diphenyl ether (BDE)-209 were measured in stationary PASs and AASs, although they were homogenously distributed within this landfill site. Temporal variability was observed for concentrations of BDE-209, -99 and -47 measured in AASs as well as tributyl phosphate during the 34-day deployment period. Moreover, air concentrations of BDE-209, -207 and -206 and selected OPEs (tris(1,3-dichloro-2-propyl) phosphate and tris(methylphenyl) phosphate) determined using AASs were positively correlated with ambient air temperatures. Gulls that visited a landfill at least once exhibited significantly greater concentrations of BDE-47 measured in PASs they carried on their back, suggesting that landfill air may represent a source of exposure to PBDEs for these birds, and potentially other urban-adapted wildlife using these sites for foraging.


Asunto(s)
Charadriiformes , Retardadores de Llama , Animales , Canadá , Monitoreo del Ambiente , Ésteres , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Organofosfatos , Instalaciones de Eliminación de Residuos
5.
Environ Int ; 147: 106369, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33418198

RESUMEN

Several bird species have adapted to foraging in landfills, although these sites are known to represent significant sources of emissions of toxic semi-volatile chemicals including the halogenated flame retardants (HFRs) (e.g., polybrominated diphenyl ethers (PBDEs) and emerging compounds). The objective of this study was to investigate the association between atmospheric exposure to PBDEs and selected emerging HFRs and their bioaccumulation in landfill-foraging birds. We determined HFR concentrations in liver of 58 GPS-tagged ring-billed gulls (Larus delawarensis) breeding in a colony near Montreal (Canada) as well as their atmospheric exposure determined using a miniature bird-borne passive air sampler. PBDE mixtures were the most abundant HFRs determined in passive air samplers (daily exposure rates of ∑9PentaBDE: 47.4 ± 6.5 pg/day; DecaBDE: 36.0 ± 6.3 pg/day, and ∑3OctaBDE: 3.4 ± 0.5 pg/day) and liver (∑9PentaBDE: 68.1 ± 8.9 ng/g ww; DecaBDE: 52.3 ± 8.1 ng/g ww, and ∑3OctaBDE: 12.8 ± 2.1 ng/g ww), and their concentrations increased with the presence probability of gulls in landfills. We found a spatial relationship between the local sources of atmospheric exposure to PBDEs and the sites associated with greatest PBDE concentrations in liver. Specifically, the atmospheric exposure index was correlated with the bioaccumulation index (Pearson r for ∑9PentaBDE: r = 0.63, p < 0.001; DecaBDE: r = 0.66, p < 0.001, and ∑3OctaBDE: r = 0.42, p < 0.001). However, we found no correlation at the individual level between daily exposure rates of HFRs in passive air samplers and their liver concentrations. This suggests that complex exposure pathways combined with toxicokinetic factors shaped HFR profiles in gull liver, potentially confounding the relationships with atmospheric exposure.


Asunto(s)
Charadriiformes , Retardadores de Llama , Animales , Bioacumulación , Canadá , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Instalaciones de Eliminación de Residuos
6.
Ultrasound Med Biol ; 46(7): 1715-1726, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381381

RESUMEN

Shear wave elastography (speed and dispersion), local attenuation coefficient slope and homodyned-K parametric imaging were used for liver steatosis grading. These ultrasound biomarkers rely on physical interactions between shear and compression waves with tissues at both macroscopic and microscopic scales. These techniques were applied in a context not yet studied with ultrasound imaging, that is, monitoring steatosis of force-fed duck livers from pre-force-fed to foie gras stages. Each estimated feature presented a statistically significant trend along the feeding process (p values <10-3). However, whereas a monotonic increase in the shear wave speed was observed along the process, most quantitative ultrasound features exhibited an absolute maximum value halfway through the process. As the liver fat fraction in foie gras is much higher than that seen clinically, we hypothesized that a change in the ultrasound scattering regime is encountered for high-fat fractions, and consequently, care has to be taken when applying ultrasound biomarkers to grading of severe states of steatosis.


Asunto(s)
Patos , Diagnóstico por Imagen de Elasticidad , Hígado/diagnóstico por imagen , Ultrasonografía , Animales , Diagnóstico por Imagen de Elasticidad/métodos , Diagnóstico por Imagen de Elasticidad/veterinaria , Nutrición Enteral/veterinaria , Hígado Graso/diagnóstico por imagen , Hígado Graso/veterinaria , Hígado/anatomía & histología , Ultrasonografía/métodos , Ultrasonografía/veterinaria
7.
Environ Int ; 135: 105387, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31841804

RESUMEN

Halogenated flame retardants (HFRs) are contaminants that are abundantly emitted from waste management facilities (WMFs) and that became ubiquitous in air of urbanized regions. Urban birds including gulls have adapted to exploiting human food resources (refuse) in WMFs, and have thus experienced population explosions worldwide. However, foraging in WMFs for birds may result in exposure to HFRs that have been shown to be toxic for animals. The objective of this study was to determine the influence of foraging near or in various WMFs on the atmospheric exposure of birds to HFRs, and to localize other sources of HFRs at the regional scale in a highly urbanized environment. We measured the atmospheric exposure to HFRs in one of the most abundant gull species in North America, the ring-billed gull (Larus delawarensis), breeding in the densely-populated Montreal area (Canada) using a novel approach combining bird-borne GPS dataloggers and miniature passive air samplers (PASs). We determined concentrations of 11 polybrominated diphenyl ethers (PBDEs) and three emerging HFRs of high environmental concern in PASs carried by gulls. We show that the daily sampling rates (pg/day) of PBDEs in PASs were highest in gulls foraging in or around landfills, but were not influenced by meteorological variables. In contrast, the daily sampling rates of emerging HFRs were lower compared to PBDEs and were not influenced by the presence of gulls in or near WMFs. This study demonstrates that atmospheric exposure to HFRs and perhaps other semi-volatile contaminants is underestimated, yet important for birds foraging in landfills.


Asunto(s)
Charadriiformes , Instalaciones de Eliminación de Residuos , Animales , Canadá , Monitoreo del Ambiente , Retardadores de Llama , Éteres Difenilos Halogenados , América del Norte
8.
Sci Total Environ ; 599-600: 1903-1911, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28545217

RESUMEN

Birds have been used intensively as biomonitors of halogenated flame retardants (HFRs), and several studies have reported elevated tissue concentrations and inter-individual variability for these contaminants. While diet is known to be an important exposure pathway for HFRs in birds, it has been suggested that exposure through air may represent an underestimated source of HFRs for certain species. However, a method was not available for measuring the atmospheric exposure of individual birds to HFRs or other semi-volatile contaminants. The goal of this study was to develop a bird-borne passive air sampler (PAS) enabling the determination of individual atmospheric exposure to gas- and particle-phase HFRs using the ring-billed gull (Larus delawarensis) nesting in the Montreal area (QC, Canada). The new miniaturized elliptical-shaped PAS (mean weight: 2.72g) was tested using two sorbent types during three exposure periods (one, two and three weeks). Results showed that PAS using polyurethane foam (PUF) combined with a glass fiber filter collected all major polybrominated diphenyl ethers (PBDEs) and exhibited better performance for collecting highly hydrophobic DecaBDE mixture congeners compared to the PAS using polydimethylsiloxane (PDMS). Emerging HFRs including hexabromobenzene, Dechlorane 604 Component B, and Dechlorane plus (DP) isomers also were sampled by the PUF-based PAS. Sampling rates for most HFRs were comparable between the three exposure periods. This novel bird-borne PAS provides valuable information on the non-dietary exposure of free-ranging birds to HFRs.


Asunto(s)
Contaminantes Atmosféricos/análisis , Charadriiformes , Monitoreo del Ambiente/instrumentación , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Animales , Quebec
9.
Ambio ; 46(Suppl 2): 262-274, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28215008

RESUMEN

Between the early 1900s and the 1990s, the greater snow goose Anser caerulescens atlanticus population grew from 3000 individuals to more than 700 000. Because of concerns about Arctic degradation of natural habitats through overgrazing, a working group recommended the stabilization of the population. Declared overabundant in 1998, special management actions were then implemented in Canada and the United States. Meanwhile, a cost-benefit socioeconomic analysis was performed to set a target population size. Discussions aiming towards attaining a common vision were undertaken with stakeholders at multiple levels. The implemented measures have had varying success; but population size has been generally stable since 1999. To be effective and meet social acceptance, management actions must have a scientific basis, result from a consensus among stakeholders, and include an efficient monitoring programme. In this paper, historical changes in population size and management decisions along with past and current challenges encountered are discussed.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Gansos/fisiología , Animales , Canadá , Ecosistema , Densidad de Población , Dinámica Poblacional
10.
J Wildl Dis ; 53(1): 81-90, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27763829

RESUMEN

Between 1998 and 2014, recurrent mortality events were reported in the Dresser's subspecies of the Common Eider ( Somateria mollissima dresseri) on Cape Cod, Massachusetts, US near Wellfleet Harbor. The early die-offs were attributed to parasitism and emaciation, but beginning in 2006 a suite of distinct lesions was observed concomitant with the isolation of a previously unknown RNA virus. This novel pathogen was identified as an orthomyxovirus in the genus Quaranjavirus and was named Wellfleet Bay virus (WFBV). To assess evidence of exposure to this virus in Common Eiders, we conducted a longitudinal study of the prevalence of WFBV antibodies at multiple locations from 2004-14; we collected 2,258 serum samples from six locations and analyzed each using a microneutralization assay. Results corroborate the emergence of WFBV in 2006 based on the first detection of antibodies in that year. Significantly higher prevalence was detected in Common Eiders sampled in Massachusetts compared to those in Maine, Nova Scotia, and Québec. For birds breeding and wintering in Massachusetss, viral exposure varied by age, sex, and season of sampling, and prevalence by season and sex were highly interrelated with greater numbers of antibody-positive males in the autumn and females in the spring. No evidence of viral exposure was detected in the Northern subspecies ( Somateria mollissima borealis). Among the locations sampled, Massachusetts appears to be the epicenter of Common Eider exposure to WFBV. Further research is warranted to understand the factors controlling the epidemiology of WFBV in Massachussetts, including those that may be limiting geographic expansion of this virus.


Asunto(s)
Patos/virología , Virus ARN/aislamiento & purificación , Animales , Bahías , Femenino , Estudios Longitudinales , Maine , Masculino , Prevalencia , Quebec , Virus ARN/patogenicidad
11.
Animals (Basel) ; 5(2): 214-25, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-26479231

RESUMEN

Gulls are commonly attracted to landfills, and managers are often required to implement cost-effective and socially accepted deterrence programs. Our objective was to evaluate the effectiveness of an intensive program that integrated the use of trained birds of prey, pyrotechnics, and playback of gull distress calls at a landfill located close to a large ring-billed gull (Larus delawarensis) colony near Montreal, Quebec, Canada. We used long-term survey data on bird use of the landfill, conducted behavioral observations of gulls during one season and tracked birds fitted with GPS data loggers. We also carried out observations at another landfill located farther from the colony, where less refuse was brought and where a limited culling program was conducted. The integrated program based on falconry resulted in a 98% decrease in the annual total number of gulls counted each day between 1995 and 2014. A separate study indicated that the local breeding population of ring-billed gulls increased and then declined during this period but remained relatively large. In 2010, there was an average (±SE) of 59 ± 15 gulls/day using the site with falconry and only 0.4% ± 0.2% of these birds were feeding. At the other site, there was an average of 347 ± 55 gulls/day and 13% ± 3% were feeding. Twenty-two gulls tracked from the colony made 41 trips towards the landfills: twenty-five percent of the trips that passed by the site with falconry resulted in a stopover that lasted 22 ± 7 min compared to 85% at the other landfill lasting 63 ± 15 min. We concluded that the integrated program using falconry, which we consider more socially acceptable than selective culling, was effective in reducing the number of gulls at the landfill.

12.
PLoS One ; 10(5): e0126964, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26020626

RESUMEN

Environmental and behavioral factors have long been assumed to affect variation in avian field metabolic rate (FMR). However, due to the difficulties in measuring continuous behavior of birds over prolonged periods of time, complete time-activity budgets have rarely been examined in relation to FMR. Our objective was to determine the effect of activity (measured by detailed time-activity budgets) and a series of extrinsic and intrinsic factors on FMR of the omnivorous ring-billed gull (Larus delawarensis). The experiment was conducted during the incubation period when both members of the pair alternate between attending the nest-site and leaving the colony to forage in aquatic and anthropogenic environments (city, agricultural). FMR was determined using the doubly labeled water method. Time-activity budgets were extrapolated from spatio-temporal data (2-5 days) obtained from bird-borne GPS data loggers. Gulls had low FMRs compared to those predicted by allometric equations based on recorded FMRs from several seabird species. Gulls proportioned their time mainly to nest-site attendance (71% of total tracking time), which reduced FMR/g body mass, and was the best variable explaining energy expenditure. The next best variable was the duration of foraging trips, which increased FMR/g; FMR/g was also elevated by the proportion of time spent foraging or flying (17% and 8% of tracking time respectively). Most environmental variables measured did not impact FMR/g, however, the percent of time birds were subjected to temperatures below their lower critical temperature increased FMR. Time-activity budgets varied between the sexes, and with temperature and capture date suggesting that these variables indirectly affected FMR/g. The gulls foraged preferentially in anthropogenic-related habitats, which may have contributed to their low FMR/g due to the high availability of protein- and lipid-rich foods. This study demonstrates that activities were the best predictors of FMR/g in ring-billed gulls, thus providing strong support for this long-standing theory in bioenergetics.


Asunto(s)
Charadriiformes/fisiología , Ecosistema , Metabolismo Energético/fisiología , Modelos Biológicos , Reproducción/fisiología , Animales , Índice de Masa Corporal , Femenino , Humanos , Masculino
13.
Environ Res ; 138: 361-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25769125

RESUMEN

Differences in feeding ecology are now recognized as major determinants of inter-individual variations in contaminant profiles of free-ranging animals, but exceedingly little attention has been devoted to the role of habitat use. Marked inter-individual variations and high levels of polybrominated diphenyl ethers (PBDEs) (e.g., DecaBDE) have previously been documented in ring-billed gulls (Larus delawarensis) breeding in a colony near Montreal (QC, Canada). However, the environmental sources of these compounds, and thus the reasons causing these large inter-individual variations remain unidentified. In the present study, we used GPS-based telemetry (±5 to 10m precision) to track ring-billed gulls from this colony to reconstruct their movements at the landscape level. We related habitat use of individual gulls (n=76) to plasma concentrations (ng/g ww) and relative contributions (percentages) to Σ38PBDEs of major congeners in the internationally restricted PentaBDE and current-use DecaBDE mixtures. Male gulls that visited waste management facilities (WMFs; i.e., landfills, wastewater treatment plants and related facilities; 25% of all GPS-tracked males) exhibited greater DecaBDE (concentrations and percentages) and lower PentaBDE (percentages) relative to those that did not. In contrast, no such relationships were found in females. Moreover, in males, DecaBDE (concentrations and percentages) increased with percentages of time spent in WMFs (i.e., ~5% of total foraging time), while PentaBDE (percentages) decreased. No relationships between percentages of time spent in other habitats (i.e., urban areas, agriculture fields, and St. Lawrence River) were found in either sex. These findings suggest that animals breeding in the vicinity of WMFs as well as mobile species that only use these sites for short stopovers to forage, could be at risk of enhanced DecaBDE exposure.


Asunto(s)
Charadriiformes/fisiología , Contaminantes Ambientales/sangre , Conducta Alimentaria , Retardadores de Llama/metabolismo , Bifenilos Polibrominados/sangre , Instalaciones de Eliminación de Residuos , Animales , Femenino , Sistemas de Información Geográfica , Masculino , Quebec , Eliminación de Residuos , Telemetría , Eliminación de Residuos Líquidos
14.
PLoS One ; 9(7): e102162, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25029498

RESUMEN

Foraging animals are influenced by the distribution of food resources and predation risk that both vary in space and time. These constraints likely shape trade-offs involving time, energy, nutrition, and predator avoidance leading to a sequence of locations visited by individuals. According to the marginal-value theorem (MVT), a central-place forager must either increase load size or energy content when foraging farther from their central place. Although such a decision rule has the potential to shape movement and habitat selection patterns, few studies have addressed the mechanisms underlying habitat use at the landscape scale. Our objective was therefore to determine how Ring-billed gulls (Larus delawarensis) select their foraging habitats while nesting in a colony located in a heterogeneous landscape. Based on locations obtained by fine-scale GPS tracking, we used resource selection functions (RSFs) and residence time analyses to identify habitats selected by gulls for foraging during the incubation and brood rearing periods. We then combined this information to gull survey data, feeding rates, stomach contents, and calorimetric analyses to assess potential trade-offs. Throughout the breeding season, gulls selected landfills and transhipment sites that provided higher mean energy intake than agricultural lands or riparian habitats. They used landfills located farther from the colony where no deterrence program had been implemented but avoided those located closer where deterrence measures took place. On the other hand, gulls selected intensively cultured lands located relatively close to the colony during incubation. The number of gulls was then greater in fields covered by bare soil and peaked during soil preparation and seed sowing, which greatly increase food availability. Breeding Ring-billed gulls thus select habitats according to both their foraging profitability and distance from their nest while accounting for predation risk. This supports the predictions of the MVT for central-place foraging over large spatial scales.


Asunto(s)
Charadriiformes/metabolismo , Ecosistema , Metabolismo Energético , Conducta Alimentaria , Animales , Dieta , Comportamiento de Nidificación , Conducta Predatoria
16.
Ecology ; 90(2): 465-75, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19323230

RESUMEN

Although water availability is primarily seen as a factor affecting food availability (a bottom-up process), we examined its effect on predator-prey interactions through an influence on prey behavior (a top-down process). We documented a link between water availability, predation risk, and reproductive success in a goose species (Chen caerulescens atlantica) inhabiting an Arctic environment where water is not considered a limited commodity. To reach water sources during incubation recesses, geese nesting in mesic tundra (low water availability) must move almost four times as far from their nest than those nesting in wetlands, which reduced their ability to defend their nest against predators and led to a higher predation rate. Nesting success was improved in high rainfall years due to increased water availability, and more so for geese nesting in the low water availability habitat. Likewise, nesting success was improved in years where the potential for evaporative water loss (measured by the atmospheric water vapor pressure) was low, presumably because females had to leave their nest less often to drink. Females from water-supplemented nests traveled a shorter distance to drink, and their nesting success was enhanced by 20% compared to the control. This shows that water availability and rainfall can have a strong effect on predator-prey dynamics and that changes in precipitation brought by climate change could have an impact on some Arctic species through a top-down effect.


Asunto(s)
Ecosistema , Gansos/fisiología , Comportamiento de Nidificación/fisiología , Conducta Predatoria/fisiología , Animales , Regiones Árticas , Charadriiformes , Cuervos , Femenino , Zorros , Masculino , Lluvia , Factores de Tiempo , Agua
17.
Mol Ecol ; 18(4): 593-602, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19207261

RESUMEN

Nonrandom dispersal has been recently advanced as a mechanism promoting fine-scale genetic differentiation in resident populations, yet how this applies to species with high rates of dispersal is still unclear. Using a migratory species considered a classical example of male-biased dispersal (the greater snow goose, Chen caerulescens atlantica), we documented a temporally stable fine-scale genetic clustering between spatially distinct rearing sites (5-30 km apart), where family aggregates shortly after hatching. Such genetic differentiation can only arise if, in both sexes, dispersal is restricted and nonrandom, a surprising result considering that pairing occurs among mixed flocks of birds more than 3000 km away from the breeding grounds. Fine-scale genetic structure may thus occur even in migratory species with high gene flow. We further show that looking for genetic structure based on nesting sites only may be misleading. Genetically distinct individuals that segregated into different rearing sites were in fact spatially mixed during nesting. These findings provide new, scale-dependent links between genetic structure, pairing, and dispersal and show the importance of sampling different stages of the breeding cycle in order to detect a spatial genetic structure.


Asunto(s)
Gansos/genética , Flujo Génico , Genética de Población , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Migración Animal , Animales , Análisis por Conglomerados , Simulación por Computador , Ecosistema , Variación Genética , Genotipo , Geografía , Modelos Genéticos , Dinámica Poblacional
18.
J Anim Ecol ; 77(3): 439-47, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18248387

RESUMEN

1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.


Asunto(s)
Arvicolinae/fisiología , Aves/fisiología , Ecosistema , Zorros/fisiología , Modelos Biológicos , Conducta Predatoria/fisiología , Animales , Anseriformes/fisiología , Regiones Árticas , Huevos , Femenino , Comportamiento de Nidificación/fisiología , Densidad de Población , Dinámica Poblacional , Factores de Riesgo , Factores de Tiempo , Humedales
19.
Oecologia ; 155(1): 33-41, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17938972

RESUMEN

Despite numerous studies on breeding dispersal, it is still unclear how habitat heterogeneity and previous nesting success interact to determine nest-site fidelity at various spatial scales. In this context, we investigated factors affecting breeding dispersal in greater snow geese (Anser caerulescens atlanticus), an Arctic breeding species nesting in two contrasting habitats (wetlands and mesic tundra) with variable pattern of snowmelt at the time of settlement in spring. From 1994 to 2005, we monitored the nesting success and breeding dispersal of individually marked females. We found that snow geese showed a moderate amount of nest-site fidelity and considerable individual variability in dispersal distance over consecutive nesting attempts. This variability can be partly accounted for by the annual timing of snowmelt. Despite this environmental constraint, habitat differences at the colony level consistently affected nesting success and settlement patterns. Females nesting in wetlands had higher nesting success than those nesting in mesic tundra. Moreover, geese responded adaptively to spatial heterogeneity by showing fidelity to their nesting habitat, independently of snowmelt pattern. From year to year, geese were more likely to move from mesic to high-quality wetland habitat, regardless of previous nesting success and without cost on their subsequent nesting performance. The unpredictability of snowmelt and the low cost of changing site apparently favour breeding-site dispersal although habitat quality promotes fidelity at the scale of habitat patches.


Asunto(s)
Cruzamiento , Ecosistema , Gansos/fisiología , Comportamiento de Nidificación/fisiología , Animales , Clima , Femenino , Masculino , Movimiento , Territorios del Noroeste
20.
Integr Comp Biol ; 44(2): 119-29, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21680492

RESUMEN

We examined the role of trophic interactions in structuring a high arctic tundra community characterized by a large breeding colony of greater snow geese (Chen caerulescens atlantica). According to the exploitation ecosystem hypothesis of Oksanen et al. (1981), food chains are controlled by top-down interactions. However, because the arctic primary productivity is low, herbivore populations are too small to support functional predator populations and these communities should thus be dominated by the plant/ herbivore trophic-level interaction. Since 1990, we have been monitoring annual abundance and productivity of geese, the impact of goose grazing, predator abundance (mostly arctic foxes, Alopex lagopus) and the abundance of lemmings, the other significant herbivore in this community, on Bylot Island, Nunavut, Canada. Goose grazing consistently removed a significant proportion of the standing crop (∼40%) in tundra wetlands every year. Grazing changed plant community composition and reduced the production of grasses and sedges to a low-level equilibrium compared to the situation where the presence of geese had been removed. Lemming cyclic fluctuations were strong and affected fox reproduction. Fox predation on goose eggs was severe and generated marked annual variation in goose productivity. Predation intensity on geese was closely related to the lemming cycle, a consequence of an indirect interaction between lemming and geese via shared predators. We conclude that, contrary to the exploitation ecosystem hypothesis, both the plant/herbivore and predator/prey interactions are significant in this arctic community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA