Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Hortic Res ; 8(1): 241, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719687

RESUMEN

In horticulture, grafting is a popular technique used to combine positive traits from two different plants. This is achieved by joining the plant top part (scion) onto a rootstock which contains the stem and roots. Rootstocks can provide resistance to stress and increase plant production, but despite their wide use, the biological mechanisms driving rootstock-induced alterations of the scion phenotype remain largely unknown. Given that epigenetics plays a relevant role during distance signalling in plants, we studied the genome-wide DNA methylation changes induced in eggplant (Solanum melongena) scion using two interspecific rootstocks to increase vigour. We found that vigour was associated with a change in scion gene expression and a genome-wide hypomethylation in the CHH context. Interestingly, this hypomethylation correlated with the downregulation of younger and potentially more active long terminal repeat retrotransposable elements (LTR-TEs), suggesting that graft-induced epigenetic modifications are associated with both physiological and molecular phenotypes in grafted plants. Our results indicate that the enhanced vigour induced by heterografting in eggplant is associated with epigenetic modifications, as also observed in some heterotic hybrids.

2.
Front Plant Sci ; 12: 613845, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679829

RESUMEN

The performance of snake melon [Cucumis melo var. flexuosus (L.)] in organic farming was studied under high biotic and salt stress conditions. Soilborne diseases (mainly caused by Macrophomina phaseolina and Neocosmospora falciformis), combined with virus incidence [Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Tomato leaf curl New Delhi virus (ToLCNDV)] and Podosphaera xanthii attacks, reduced yield by more than 50%. Snake melon susceptibility to M. phaseolina and Monosporascus cannonballus was proved in pathogenicity tests, while it showed some degree of resistance to Neocosmospora keratoplastica and N. falciformis. On the contrary, salt stress had a minor impact, although a synergic effect was detected: yield losses caused by biotic stress increased dramatically when combined with salt stress. Under biotic stress, grafting onto the melon F1Pat81 and wild Cucumis rootstocks consistently reduced plant mortality in different agroecological conditions, with a better performance compared to classic Cucurbita commercial hybrids. Yield was even improved under saline conditions in grafted plants. A negative effect was detected, though, on consumer acceptability, especially with the use of Cucurbita rootstocks. Cucumis F1Pat81 rootstock minimized this side effect, which was probably related to changes in the profile of sugars, acids, and volatiles. Grafting affected sugars and organic acid contents, with this effect being more accentuated with the use of Cucurbita rootstocks than with Cucumis. In fact, the latter had a higher impact on the volatile organic compound profile than on sugar and acid profile, which may have resulted in a lower effect on consumer perception. The use of Cucumis rootstocks seems to be a strategy to enable organic farming production of snake melon targeted to high-quality markets in order to promote the cultivation of this neglected crop.

3.
BMC Plant Biol ; 17(1): 226, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29187140

RESUMEN

BACKGROUND: Somatic embryogenesis is the preferred method for cell to plant regeneration in Vitis vinifera L. However, low frequencies of plant embryo conversion are commonly found. In a previous work we obtained from cut-seeds of a grapevine infected with the Grapevine leafroll associated viruses 1 and 3 (GLRaV-1 and GLRaV-3), high rates of direct regeneration, embryo plant conversion and sanitation. The aim of this study is to evaluate the usefulness of this procedure for regeneration of other grapevine varieties which include some infected with one to three common grapevine viruses (GLRaV-3, Grapevine fanleaf virus (GFLV) and Grapevine fleck virus (GFkV)). As grapevine is highly heterozygous, it was necessary to select from among the virus-free plants those that regenerated from mother tissues around the embryo, (true-to-type). RESULTS: Somatic embryogenesis and plant regeneration were achieved in a first experiment, using cut-seeds from the 14 grapevine varieties Airén, Cabernet Franc, Cabernet Sauvignon, Mencía, Merlot, Monastrell, Petit Verdot, Pinot Blanc (infected by GFLV and GFkV), Pinot Gris, Pinot Meunier, Pinot Noir, Syrah, Tempranillo (infected by GFLV), and Verdil. All regenerated plants were confirmed to be free of GFkV whereas at least 68% sanitation was obtained for GFLV. The SSR profiles of the virus-free plants showed, in both varieties, around 10% regeneration from mother tissue (the same genetic make-up as the mother plant). In a second experiment, this procedure was used to sanitize the varieties Cabernet Franc, Godello, Merlot and Valencí Blanc infected by GLRaV-3, GFkV and/or GFLV. CONCLUSIONS: Cut-seeds can be used as explants for embryogenesis induction and plant conversion in a broad range of grapevine varieties. The high regeneration rates obtained with this procedure facilitate the posterior selection of true-to-type virus-free plants. A sanitation rate of 100% was obtained for GFkV as this virus is not seed-transmitted. However, the presence of GLRaV-3 and GFLV in some of the regenerated plants showed that both viruses are seed-transmitted. The regeneration of true-to-type virus-free plants from all infected varieties indicates that this methodology may represent an alternative procedure for virus cleaning in grapevine.


Asunto(s)
Técnicas de Embriogénesis Somática de Plantas , Vitis/embriología , Medios de Cultivo , Células Vegetales , Virus de Plantas , Especificidad de la Especie , Vitis/crecimiento & desarrollo , Vitis/virología
4.
Electron. j. biotechnol ; 27: 80-83, May. 2017. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1010415

RESUMEN

Background: A protocol for the micropropagation of the grape (Vitis vinifera L.) cultivar 'Monastrell' was developed. Initial plant material was obtained from the sanitary selection of grapevine plants performed by real-time RT-PCR to confirm the absence of Grapevine fanleaf virus, Arabis mosaic virus, Grapevine leafroll-associated virus 1, Grapevine leafroll-associated virus 3, and Grapevine fleck virus. Results: The effects of the salt composition (comparing Lloyd and McCown woody plant medium and Murashige and Skoog medium 1/2 macronutrients) and the growth regulator benzylaminopurine (BAP), at 0 and 8.9 µM, on plant propagation were evaluated using nodes as explants. The most efficient procedure consisted of bud induction in the medium with Lloyd and McCown woody plant salts and 8.9 µM BAP for 30 d along with elongation in cytokinin-free medium for 60 d, which gave 22 nodes/explant (174 plants/initial plant). A second cycle of propagation in a medium without BAP for another 60 d could give approximately 10,000 nodes, which can be obtained after an additional 2 months of culture. All plants acclimatized after the second cycle of multiplication were successfully transferred to soil. Conclusion: We developed an optimal protocol for V. vinifera cv. 'Monastrell' micropropagation, the first described for this cultivar.


Asunto(s)
Vitis/crecimiento & desarrollo , Purinas/metabolismo , Compuestos de Bencilo/metabolismo , Técnicas In Vitro , Cloruro de Sodio/metabolismo , Vitis/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Aclimatación
5.
J Sci Food Agric ; 97(5): 1646-1655, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27436661

RESUMEN

BACKGROUND: The grafting of watermelons (Citrullus lanatus) is a common technique that increases yield under stressful soil conditions. The most common rootstocks for watermelons are Cucurbita hybrids. However, they often have a negative impact on fruit quality. Exploiting novel Citrullus germplasm such as citron melon (Citrullus lanatus var. citroides) is an alternative to avoid these quality problems. RESULTS: Citron melon has been validated as watermelon rootstock, comparing its effects on watermelon quality to those of Cucurbita hybrids. Larger fruits with thicker rinds were observed in fruits from plants grafted onto both citron and Cucurbita rootstocks. The citron melon had no significant effect on flesh sugars or acid profiles compared to non-grafted watermelons, except for an increase in glucose and malic acid content, which also occurred in the Cucurbita rootstocks. The aroma profile of fruits produced on citron melon was similar to that of the non-grafted and self-grafted controls. The citron rootstock did not display the increased levels of (Z)-6-nonen-1-ol (a compound associated with pumpkin-like odors) found in fruits produced with Cucurbita hybrids. CONCLUSION: The low impact of citron melon rootstock on fruit quality, along with the enhanced resistance against nematodes, make the citron a promising alternative to Cucurbita rootstocks. © 2016 Society of Chemical Industry.


Asunto(s)
Citrullus/química , Citrullus/crecimiento & desarrollo , Ácidos/análisis , Cucurbita , Frutas/química , Frutas/crecimiento & desarrollo , Monosacáridos/análisis , Odorantes , Raíces de Plantas , España , Compuestos Orgánicos Volátiles/análisis
6.
Cryobiology ; 71(2): 279-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26231072

RESUMEN

Bituminaria bituminosa (L.) C.H. Stirton is a drought tolerant, perennial legume pasture species and a source of pharmaceutical compounds. Bituminaria breeding programs aim to develop and conserve hybrids with desirable traits such as high forage quality, tolerance to biotic or abiotic stresses, and high contents of furanocoumarins. In this work we present a cryopreservation study of different B. bituminosa accessions: two varieties and eight intervarietal hybrids resulting from crosses between the three botanical varieties: var. bituminosa, var. crassiuscula, and var. albomarginata. No previous work on cryopreservation of Bituminaria species has been reported. We applied the ultra-fast cooling method, using droplet vitrification on aluminum foil strips. First, we investigated the PVS2 toxicity and cryopreservation damage in two genotypes, comparing three PVS2 treatments and two culture media. An incubation of 30 min in PVS2 resulted in regeneration rates after cryopreservation higher than 80%. The MS medium was selected for optimal meristem outgrowth, in order to avoid the prominent callus formation that was observed in the presence of BAP. These conditions were subsequently used to cryopreserve eight other genotypes. The results were highly variable; 45 days after cryopreservation, survival ranged between 22% and 98% while regeneration ranged between 0% and 96%, depending on the accession. A significant and positive correlation was observed between survival and regeneration. At 90 days post culture plantlets could be recovered from cryopreserved explants of all genotypes. This study shows that the droplet vitrification method is promising for the cryopreservation of eight of the 10 genotypes assayed and the method can thus be applied to develop a cryobank of B. bituminosa.


Asunto(s)
Criopreservación/métodos , Fabaceae/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Vitrificación , Quimera , Crioprotectores/farmacología , Crioprotectores/toxicidad , Medios de Cultivo , Fabaceae/clasificación , Genotipo
7.
ScientificWorldJournal ; 2014: 702071, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592179

RESUMEN

Hybrids of Solanum melongena and S. aethiopicum are of interest as rootstocks of eggplant, as they are highly vigorous and can incorporate resistance to several diseases. However, hybridization between both species is difficult. Therefore, protocols for in vitro culture are of great interest for their micropropagation and biotechnological breeding. We assessed the organogenesis response from leaf explants in four interspecific hybrids and in their parents testing two organogenic media: SIM-A, containing 6-benzylaminopurine and kinetin, and SIM-B, which contains thidiazuron. A higher regeneration capacity in the hybrids compared to their parents was observed. Whereas in interspecific hybrids and in one accession of S. melongena similar regeneration rates were observed for SIM-A and SIM-B, higher regeneration was found in the rest of genotypes when thidiazuron was used. Rooting ability in the interspecific hybrids was lower in in vitro micropropagated plants (35-60%) than in plants regenerated from explants (100%). The addition of indolbutiric acid (1 mg L(-1)) induced roots in nonrooted genotypes. In summary, we have adjusted in vitro culture conditions for regenerating and rooting S. melongena × S. aethiopicum hybrids. We have also demonstrated that these hybrids are heterotic for regeneration, which may be of interest for basic science studies.


Asunto(s)
Vigor Híbrido , Carácter Cuantitativo Heredable , Solanum melongena/genética , Compuestos de Bencilo/farmacología , Cruzamiento/métodos , Cinetina/farmacología , Organogénesis de las Plantas , Compuestos de Fenilurea/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Purinas/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/fisiología , Tiadiazoles/farmacología
8.
BMC Plant Biol ; 11: 140, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22014149

RESUMEN

BACKGROUND: Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in the regeneration response is high in both tomato and other important crops. Despite the various studies that have been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of this study was to localize the genetic factors affecting regeneration in tomato. RESULTS: We developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar (cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii (PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar region as that detected in the BC1 population. Marker segregation distortion was observed in this population in those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes that may be related to regeneration. CONCLUSIONS: In this study we have identified new QTLs related to the complex process of regeneration from tissue culture. We have also located two candidate genes, discovering a putative allele of the high regeneration gene Rg-1 in the QTL on chromosome 3. The identified QTLs could represent a significant step toward the understanding of this process and the identification of other related candidate genes. It will also most likely facilitate the development of molecular markers for use in gene isolation.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Cruzamiento , ADN de Plantas/genética , Ligamiento Genético , Técnicas de Genotipaje , Solanum lycopersicum/crecimiento & desarrollo , Repeticiones de Microsatélite , Polimorfismo de Longitud del Fragmento de Restricción , Técnicas de Cultivo de Tejidos
9.
Int J Phytoremediation ; 10(3): 183-94, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18710094

RESUMEN

Soils from the alluvial flats of the Turia River, Valencia, Spain, which were highly contaminated by decades of industrial activity, were surveyed for native plant species that could be candidates useful in phytoremediation. Concentrations of heavy metals and arsenic (As) in soils reached 25,000 mg Kg(-1) Pb, 12,000 mg Kg(-1) Zn, 70 mg Kg(-1) Cd, and 13500 mg Kg(-1) As. The predominant vegetation was collected and species identified. Soil samples and the corresponding plant shoots were analyzed to determine the amount of As accumulated by the various plant species. Several were able to tolerate more than 1000 mg Kg(-1) As in the soil. Bassia scoparia (Chenopodiaceae) survive in soil with 8375 mg Kg(-1) As. Arsenic accumulation in shoots of the various plant species investigated ranged from 0.1 to 107 mg Kg(-1) dw. Bassia scoparia (Chenopodiaceae), Inula viscosa (Asteraceae), Solanum nigrum (Solanaceae), and Hirschfeldia incana (Brassicaceae) had the highest values for As accumulation.


Asunto(s)
Arsénico/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Residuos Industriales , Ríos , Contaminantes del Suelo/química , España , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
10.
Plant Cell Physiol ; 49(5): 679-90, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18337269

RESUMEN

Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.


Asunto(s)
Genes de Plantas , Giberelinas/metabolismo , Giberelinas/farmacología , Homeostasis/efectos de los fármacos , Nicotiana/genética , Nicotiana/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homocigoto , Hibridación Genética/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Oxigenasas de Función Mixta/genética , Oxidación-Reducción/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Pisum sativum/enzimología , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/enzimología , Transcripción Genética/efectos de los fármacos
11.
J Exp Bot ; 57(9): 2037-47, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16687436

RESUMEN

Based on its compact habit, Micro-Tom, a dwarf cultivar of tomato (Solanum lycopersicum L.), has been proposed as a preferred variety to carry out molecular research in tomato. This cultivar, however, is poorly characterized. It is shown here that Micro-Tom has mutations in the SELF-PRUNING (SP) and DWARF (D) genes. In addition to this, it is also shown that Micro-Tom harbours at least two independently segregating resistance loci to the plant pathogen Cladosporium fulvum. The presence of the self-pruning mutation in Micro-Tom, that generates a determinate phenotype, was confirmed by crossing and sequence analysis. It was also found that Micro-Tom has a mutation in the DWARF gene (d) that leads to mis-splicing and production of at least two shorter mRNAs. The d mutation is predicted to generate truncated DWARF protein. The d sequence defect co-segregates with dark-green and rugose leaves, characteristics of brassinosteroid biosynthesis mutants. Micro-Tom also carries at least another mutation producing internode length reduction that affects plant height but not active gibberellin (GA) levels, which were similar in dwarf and tall Micro-TomxSeverianin segregants. GAs and brassinosteroids act synergistically in Micro-Tom, and the response to GA depends on brassinosteroids because the elongation of internodes was at least six times higher when GA(3) was applied simultaneously with brassinolide. A novel variety, Micro-0 that is fully susceptible to C. fulvum and almost as dwarf as Micro-Tom, has been generated from the cross of Cf0xMicro-Tom. This line represents a valuable resource for future analysis of Cf resistance genes through breeding or transformation.


Asunto(s)
Cladosporium/fisiología , Giberelinas/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Esteroides/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Giberelinas/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/fisiología , Datos de Secuencia Molecular , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/fisiología , Empalme del ARN , Esteroides/metabolismo
12.
Biochem Biophys Res Commun ; 303(2): 440-5, 2003 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-12659836

RESUMEN

From a number of wild plant species growing on soils highly contaminated by heavy metals in Eastern Spain, Nicotiana glauca R. Graham (shrub tobacco) was selected for biotechnological modification, because it showed the most appropriate properties for phytoremediation. This plant has a wide geographic distribution, is fast-growing with a high biomass, and is repulsive to herbivores. Following Agrobacterium mediated transformation, the induction and overexpression of a wheat gene encoding phytochelatin synthase (TaPCS1) in this particular plant greatly increased its tolerance to metals such as Pb and Cd, developing seedling roots 160% longer than wild type plants. In addition, seedlings of transformed plants grown in mining soils containing high levels of Pb (1572 ppm) accumulated double concentration of this heavy metal than wild type. These results indicate that the transformed N. glauca represents a highly promising new tool for use in phytoremediation efforts.


Asunto(s)
Biodegradación Ambiental , Glucuronidasa/genética , Plomo/farmacocinética , Nicotiana/genética , Plantas Modificadas Genéticamente/fisiología , Transporte Biológico , Glucuronidasa/metabolismo , Metales Pesados/farmacocinética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/enzimología , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo
13.
Physiol Plant ; 112(2): 251-260, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11454231

RESUMEN

Transgenic plants of Nicotiana tabacum overexpressing a gibberellin (GA) 20-oxidase cDNA (CcGA20ox1) from citrus, under the control of the 35S promoter, were taller (up to twice) and had larger inflorescences and longer flower peduncles than those of control plants. Hypocotyls of transgenic seedlings were also longer (up to 4 times), and neither the seedlings nor the growing plants elongated further after application of GA3. Hypocotyl and stem lengths were reduced by application of paclobutrazol, and this inhibition was reversed by exogenous GA3. The ectopic overexpression of CcGA20ox1 enhanced the non-13-hydroxylation pathway of GA biosynthesis leading to GA4, apparently at the expense of the early-13-hydroxylation pathway. The level of GA4 (the active GA from the non-13-hydroxylation pathway) in the shoot of transgenic plants was 3-4 times higher than in control plants, whereas that of GA1, formed via the early-13-hydroxylation pathway (the main GA biosynthesis pathway in tobacco), decreased or was not affected. GA4 applied to the culture medium or to the expanding leaves was found to be at least equally active as GA1 on stimulating hypocotyl and stem elongation of tobacco plants. The results suggest that the tall phenotype of tobacco transgenic plants was due to their higher content of GA4, and that the GA response was saturated by the presence of the transgene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA