Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(15): 6392-6400, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38655059

RESUMEN

Conjugated polymers composed of alternating electron donor and acceptor segments have come to dominate the materials being considered for organic photoelectrodes and solar cells, in large part because of their favorable near-infrared absorption. The prototypical electron-transporting push-pull polymer poly(NDI2OD-T2) (N2200) is one such material. While reasonably efficient organic solar cells can be fabricated with N2200 as the acceptor, it generally fails to contribute as much photocurrent from its absorption bands as the donor with which it is paired. Moreover, transient absorption studies have shown N2200 to have a consistently short excited-state lifetime (∼100 ps) that is dominated by a ground-state recovery. In this paper, we investigate whether these characteristics are intrinsic to the backbone structure of this polymer or if these are extrinsic effects from ubiquitous solution-phase and thin-film aggregates. We compare the solution-phase photophysics of N2200 with those of a pair of model compounds composed of alternating bithiophene (T2) donor and naphthalene diimide (NDI) acceptor units, NDI-T2-NDI and T2-NDI-T2, in a dilute solution. We find that the model compounds have even faster ground-state recovery dynamics (τ = 45, 27 ps) than the polymer (τ = 133 ps), despite remaining molecularly isolated in solution. In these molecules, as in the case of the N2200 polymer, the lowest excited state has a T2 to NDI charge-transfer (CT) character. Electronic-structure calculations indicate that the short lifetime of this state is due to fast nonradiative decay to the ground state (GS) promoted by strong CT-GS electronic coupling and strong electron-vibrational coupling with high-frequency (quantum) normal modes.

2.
ACS Nano ; 18(11): 8190-8198, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38465641

RESUMEN

Innovation in optoelectronic semiconductor devices is driven by a fundamental understanding of how to move charges and/or excitons (electron-hole pairs) in specified directions for doing useful work, e.g., for making fuels or electricity. The diverse and tunable electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) and one-dimensional (1D) semiconducting single-walled carbon nanotubes (s-SWCNTs) make them good quantum confined model systems for fundamental studies of charge and exciton transfer across heterointerfaces. Here we demonstrate a mixed-dimensionality 2D/1D/2D MoS2/SWCNT/WSe2 heterotrilayer that enables ultrafast photoinduced exciton dissociation, followed by charge diffusion and slow recombination. Importantly, the heterotrilayer serves to double charge carrier yield relative to a MoS2/SWCNT heterobilayer and also demonstrates the ability of the separated charges to overcome interlayer exciton binding energies to diffuse from one TMDC/SWCNT interface to the other 2D/1D interface, resulting in Coulombically unbound charges. Interestingly, the heterotrilayer also appears to enable efficient hole transfer from SWCNTs to WSe2, which is not observed in the identically prepared WSe2/SWCNT heterobilayer, suggesting that increasing the complexity of nanoscale trilayers may modify dynamic pathways. Our work suggests "mixed-dimensionality" TMDC/SWCNT based heterotrilayers as both interesting model systems for mechanistic studies of carrier dynamics at nanoscale heterointerfaces and for potential applications in advanced optoelectronic systems.

3.
ACS Energy Lett ; 9(3): 896-907, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482181

RESUMEN

Energy transfer across the donor-acceptor interface in organic photovoltaics is usually beneficial to device performance, as it assists energy transport to the site of free charge generation. Here, we present a case where the opposite is true: dilute donor molecules in an acceptor host matrix exhibit ultrafast excitation energy transfer (EET) to the host, which suppresses the free charge yield. We observe an optimal photochemical driving force for free charge generation, as detected via time-resolved microwave conductivity (TRMC), but with a low yield when the sensitizer is excited. Meanwhile, transient absorption shows that transferred excitons efficiently produce charge-transfer states. This behavior is well described by a competition for the excited state between long-range electron transfer that produces free charge and EET that ultimately produces only localized charge-transfer states. It cannot be explained if the most localized CT states are the intermediate between excitons and the free charge in this system.

4.
Beilstein J Org Chem ; 19: 1912-1922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116245

RESUMEN

2,2'-Bis(4-dimethylaminophenyl)- and 2,2'-dicyclohexyl-1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazole ((N-DMBI)2 and (Cyc-DMBI)2) are quite strong reductants with effective potentials of ca. -2 V vs ferrocenium/ferrocene, yet are relatively stable to air due to the coupling of redox and bond-breaking processes. Here, we examine their use in accomplishing electron transfer-induced bond-cleavage reactions, specifically dehalogenations. The dimers reduce halides that have reduction potentials less cathodic than ca. -2 V vs ferrocenium/ferrocene, especially under UV photoexcitation (using a 365 nm LED). In the case of benzyl halides, the products are bibenzyl derivatives, whereas aryl halides are reduced to the corresponding arenes. The potentials of the halides that can be reduced in this way, quantum-chemical calculations, and steady-state and transient absorption spectroscopy suggest that UV irradiation accelerates the reactions via cleavage of the dimers to the corresponding radical monomers.

5.
J Am Chem Soc ; 145(30): 16374-16382, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467432

RESUMEN

Manifesting chemical differences in individual rare earth (RE) element complexes is challenging due to the similar sizes of the tripositive cations and the corelike 4f shell. We disclose a new strategy for differentiating between similarly sized Dy3+ and Y3+ ions through a tailored photochemical reaction of their isostructural complexes in which the f-electron states of Dy3+ act as an energy sink. Complexes RE(hfac)3(NMMO)2 (RE = Dy (2-Dy) and Y (2-Y), hfac = hexafluoroacetylacetonate, and NMMO = N-methylmorpholine-N-oxide) showed variable rates of oxygen atom transfer (OAT) to triphenylphosphine under ultraviolet (UV) irradiation, as monitored by 1H and 19F NMR spectroscopies. Ultrafast transient absorption spectroscopy (TAS) identified the excited state(s) responsible for the photochemical OAT reaction or lack thereof. Competing sensitization pathways leading to excited-state deactivation in 2-Dy through energy transfer to the 4f electron manifold ultimately slows the OAT reaction at this metal cation. The measured rate differences between the open-shell Dy3+ and closed-shell Y3+ complexes demonstrate that using established principles of 4f ion sensitization may deliver new, selective modalities for differentiating the RE elements that do not depend on cation size.

6.
J Am Chem Soc ; 144(30): 13673-13687, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857885

RESUMEN

Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of zinc titanium nitride (ZnTiN2) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN2 thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN2 is explored using density functional theory. Under electrochemical polarization, the ZnTiN2 surfaces have TiO2- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN2 is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.

7.
Chem Sci ; 12(33): 11146-11156, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34522312

RESUMEN

Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore (ADT-COOH) adsorbed to mesoporous indium tin oxide (nanoITO), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO:ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than -0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.

8.
J Phys Chem A ; 121(50): 9579-9588, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29111732

RESUMEN

A series of linear thiophene oligomers containing 4, 6, 8, 10, and 12 thienylene units were synthesized and end-capped with naphthalene diimide (NDI) acceptors with the objective to study the effect of oligomer length on the dynamics of photoinduced electron transfer and charge recombination. The synthetic work afforded a series of nonacceptor-substituted thiophene oligomers, Tn, and corresponding NDI end-capped series, TnNDI2 (where n is the number of thienylene repeat units). This paper reports a complete photophysical characterization study of the Tn and TnNDI2 series by using steady-state absorption, fluorescence, singlet oxygen sensitized emission, two-photon absorption, and nanosecond-microsecond transient absorption spectroscopy. The thermodynamics of photoinduced electron transfer and charge recombination in the TnNDI2 oligomers were determined by analysis of photophysical and electrochemical data. Excitation of the Tn oligomers gives rise to efficient fluorescence and intersystem crossing to a triplet excited state that is easily observed by nanosecond transient absorption spectroscopy. Bimolecular photoinduced electron transfer from the triplet states, 3Tn*, to N,N-dimethylviologen (MV2+) occurs, and by using microsecond transient absorption it is possible to assign the visible region absorption spectra for the one electron oxidized (polaron) states, Tn+•. The fluorescence of the TnNDI2 oligomers is quenched nearly quantitatively, and no long-lived transients are observed by nanosecond transient absorption. These findings suggest that rapid photoinduced electron transfer and charge recombination occurs, NDI-1(Tn)*-NDI → NDI-(Tn)+•-NDI-• → NDI-Tn-NDI. Preliminary femtosecond-picosecond transient absorption studies on T4NDI2 reveal that both forward electron transfer and charge recombination occur with k > 1011 s-1, consistent with both reactions being nearly activationless. Analysis with semiclassical electron transfer theory suggests that both reactions occur at near the optimum driving force where -ΔG ∼ λ.

9.
J Phys Chem Lett ; 7(24): 5297-5301, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973875

RESUMEN

Interfacial dynamics are investigated in SnO2/TiO2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([RuII(bpy)2(4,4'-(PO3H2)2bpy)]2+, RuP) using transient absorption methods. Electron injection from the chromophore into the TiO2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived charge-separated states (CSS) depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO2 core and must tunnel through the TiO2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of dye-sensitized photoelectrosynthesis cells (DSPECs).

10.
J Am Chem Soc ; 138(40): 13085-13102, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27654634

RESUMEN

The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates high bandgap, nanoparticle oxide semiconductors with the light-absorbing and catalytic properties of designed chromophore-catalyst assemblies. The goals are photoelectrochemical water splitting into hydrogen and oxygen and reduction of CO2 by water to give oxygen and carbon-based fuels. Solar-driven water oxidation occurs at a photoanode and water or CO2 reduction at a cathode or photocathode initiated by molecular-level light absorption. Light absorption is followed by electron or hole injection, catalyst activation, and catalytic water oxidation or water/CO2 reduction. The DSPEC is of recent origin but significant progress has been made. It has the potential to play an important role in our energy future.

11.
J Am Chem Soc ; 138(13): 4426-38, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26974040

RESUMEN

Interfacial electron transfer at titanium dioxide (TiO2) is investigated for a series of surface bound ruthenium-polypyridyl dyes whose metal-to-ligand charge-transfer state (MLCT) energetics are tuned through chemical modification. The 12 complexes are of the form Ru(II)(bpy-A)(L)2(2+), where bpy-A is a bipyridine ligand functionalized with phosphonate groups for surface attachment to TiO2. Functionalization of ancillary bipyridine ligands (L) enables the potential of the excited state Ru(III/)* couple, E(+/)*, in 0.1 M perchloric acid (HClO4(aq)) to be tuned from -0.69 to -1.03 V vs NHE. Each dye is excited by a 200 fs pulse of light in the visible region of the spectrum and probed with a time-delayed supercontiuum pulse (350-800 nm). Decay of the MLCT excited-state absorption at 376 nm is observed without loss of the ground-state bleach, which is a clear signature of electron injection and formation of the oxidized dye. The dye-dependent decays are biphasic with time constants in the 3-30 and 30-500 ps range. The slower injection rate constant for each dye is exponentially distributed relative to E(+/)*. The correlation between the exponentially diminishing density of TiO2 sub-band acceptor levels and injection rate is well described using Marcus-Gerischer theory, with the slower decay components being assigned to injection from the thermally equilibrated state and the faster components corresponding to injection from higher energy states within the (3)MLCT manifold. These results and detailed analyses incorporating molecular photophysics and semiconductor density of states measurements indicate that the multiexponential behavior that is often observed in interfacial injection studies is not due to sample heterogeneity. Rather, this work shows that the kinetic heterogeneity results from competition between excited-state relaxation and injection as the photoexcited dye relaxes through the (3)MLCT manifold to the thermally equilibrated state, underscoring the potential for a simple kinetic model to reproduce the complex kinetic behavior often observed at the interface of mesoporous metal oxide materials.

12.
ACS Appl Mater Interfaces ; 7(48): 26828-38, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26561718

RESUMEN

An isoindigo based π-conjugated oligomer and polymer that contain cyclometalated platinum(II) "auxochrome" units were subjected to photophysical characterization, and application of the polymer in bulk heterojunction polymer solar cells with PCBM acceptor was examined. The objective of the study was to explore the effect of the heavy metal centers on the excited state properties, in particular, intersystem crossing to a triplet (exciton) state, and further how this would influence the performance of the organometallic polymer in solar cells. The materials were characterized by electrochemistry, ground state absorption, emission, and picosecond-nanosecond transient absorption spectroscopy. Electrochemical measurements indicate that the cyclometalated units have a significant impact on the HOMO energy level of the chromophores, but little effect on the LUMO, which is consistent with localization of the LUMO on the isoindigo acceptor unit. Picosecond-nanosecond transient absorption spectroscopy reveals a transient with ∼100 ns lifetime that is assigned to a triplet excited state that is produced by intersystem crossing from a singlet state on a time scale of ∼130 ps. This is the first time that a triplet state has been observed for isoindigo π-conjugated chromophores. The performance of the polymer in bulk heterojunction solar cells was explored with PC61BM as an acceptor. The performance of the cells was optimum at a relatively high PCBM loading (1:6, polymer:PCBM), but the overall efficiency was relatively low with power conversion efficiency (PCE) of 0.22%. Atomic force microscopy of blend films reveals that the length scale of the phase separation decreases with increasing PCBM content, suggesting a reason for the increase in PCE with acceptor loading. Energetic considerations show that the triplet state in the polymer is too low in energy to undergo charge separation with PCBM. Further, due to the relatively low LUMO energy of the polymer, charge transfer from the singlet to PCBM is only weakly exothermic, which is believed to be the reason that the photocurrent efficiency is relatively low.

13.
J Phys Chem Lett ; 6(23): 4736-42, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26554498

RESUMEN

Surface-bound, perylenediimide (PDI)-based molecular assemblies have been synthesized on nanocrystalline TiO2 by reaction of a dianhydride with a surface-bound aniline and succinimide bonding. In a second step, the Fe(II) polypyridyl complex [Fe(II)(tpy-PhNH2)2](2+) was added to the outside of the film, also by succinimide bonding. Ultrafast transient absorption measurements in 0.1 M HClO4 reveal that electron injection into TiO2 by (1)PDI* does not occur, but rather leads to the ultrafast formation of the redox-separated pair PDI(•+),PDI(•-), which decays with complex kinetics (τ1 = 0.8 ps, τ2 = 15 ps, and τ3 = 1500 ps). With the added Fe(II) polypyridyl complex, rapid (<25 ps) oxidation of Fe(II) by the PDI(•+),PDI(•-) redox pair occurs to give Fe(III),PDI(•-) persisting for >400 µs in the film environment.

15.
J Phys Chem A ; 118(45): 10301-8, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24734993

RESUMEN

Femtosecond transient absorption spectroscopy is used to characterize the first photoactivation step in a chromophore/water oxidation catalyst assembly formed through a "layer-by-layer" approach. Assemblies incorporating both chromophores and catalysts are central to the function of dye-sensitized photoelectrosynthesis cells (DSPECs) for generating solar fuels. The chromophore, [Rua(II)](2+) = [Ru(pbpy)2(bpy)](2+), and water oxidation catalyst, [Rub(II)-OH2](2+) = [Ru(4,4'-(CH2PO3H2)2bpy)(Mebimpy)(H2O)](2+), where bpy = 2,2'-bipyridine, pbpy = 4,4'-(PO3H2)2bpy, and Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine), are arranged on nanocrystalline TiO2 via phosphonate-Zr(IV) coordination linkages. Analysis of the transient spectra of the assembly (denoted TiO2-[Rua(II)-Zr-Rub(II)-OH2](4+)) reveal that photoexcitation initiates electron injection, which is then followed by the transfer of the oxidative equivalent from the chromophore to the catalyst with a rate of kET = 5.9 × 10(9) s(-1) (τ = 170 ps). While the assembly, TiO2-[Rua(II)-Zr-Rub(II)-OH2](4+), has a near-unit efficiency for transfer of the oxidative equivalent to the catalyst, the overall efficiency of the system is only 43% due to nonproductive photoexcitation of the catalyst and nonunit efficiency for electron injection. The modular nature of the layer-by-layer system allows for variation of the light-harvesting chromophore and water oxidation catalyst for future studies to increase the overall efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...