Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Microbiol ; 46(1): 100-119, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32093536

RESUMEN

This review summarises major highlights on the structural biology of the chlamydial envelope. Chlamydiae are obligate intracellular bacteria, characterised by a unique biphasic developmental cycle. Depending on the stage of their lifecycle, they appear in the form of elementary or reticulate bodies. Since these particles have distinctive functions, it is not surprising that their envelope differs in lipid as well as in protein content. Vice versa, by identifying surface proteins, specific characteristics of the particles such as rigidity or immunogenicity may be deduced. Detailed information on the bacterial membranes will increase our understanding on the host-pathogen interactions chlamydiae employ to survive and grow and might lead to new strategies to battle chlamydial infections.


Asunto(s)
Membrana Celular/metabolismo , Chlamydia/metabolismo , Lípidos de la Membrana/metabolismo , Chlamydia/crecimiento & desarrollo , Infecciones por Chlamydia/patología , Interacciones Huésped-Patógeno , Humanos , Porinas/metabolismo
2.
Front Microbiol ; 10: 2329, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649655

RESUMEN

Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria's survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.

3.
Mol Ther Nucleic Acids ; 17: 867-878, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31472371

RESUMEN

In this work, we studied the expression kinetics and innate immune response of a self-amplifying mRNA (sa-RNA) after electroporation and lipid-nanoparticle (LNP)-mediated delivery in the skin of mice. Intradermal electroporation of the sa-RNA resulted in a plateau-shaped expression, with the plateau between day 3 and day 10. The overall protein expression of sa-RNA was significantly higher than that obtained after electroporation of plasmid DNA (pDNA) or non-replication mRNAs. Moreover, using IFN-ß reporter mice, we elucidated that intradermal electroporation of sa-RNA induced a short-lived moderate innate immune response, which did not affect the expression of the sa-RNA. A completely different expression profile and innate immune response were observed when LNPs were used. The expression peaked 24 h after intradermal injection of sa-RNA-LNPs and subsequently showed a sharp drop. This drop might be explained by a translational blockage caused by the strong innate immune response that we observed in IFN-ß reporter mice shortly (4 h) after intradermal injection of sa-RNA-LNPs. A final interesting observation was the capacity of sa-RNA-LNPs to transfect the draining lymph nodes after intradermal injection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA