Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 151: 105379, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473199

RESUMEN

Trichomonas vaginalis infection is the STI most common worldwide. Indole-3-carbinol (I3C) is a phytochemical presenting promising biological activities. In this study, design, formulation, and evaluation of a vaginal hydrogel containing I3C-loaded nanocapsules for the treatment of trichomoniasis have been investigated. Nanocapsules of Eudragit® RS100 and rosehip oil containing I3C (NC-I3C) were prepared by interfacial deposition of preformed polymer method. In vitro evaluations showed that free I3C (IC50 = 3.36 µg/mL) was able to reduce the trophozoites viability at higher concentrations (3.13 and 6.25 µg/mL), while nanoencapsulation (IC50 = 2.09 µg/mL) reduced the viability at all concentrations evaluated. Comparing free and nanoencapsulated I3C, we observe that nanoencapsulation improved anti-T. vaginalis activity. In order to obtain a formulation for vaginal administration, hydrogels (HG-NC-I3C) were prepared by thickening the NC-I3C with gellan gum. HG-NC-I3C presented particle size below 195 nm, low polydispersity index (<0.2), I3C content = 0.50 ± 0.01 mg/g, pH = 7.05, non-Newtonian pseudoplastic flow behavior and exhibited mucoadhesion to cow's vaginal mucosa. Evaluation of irritation potential by chorioallantoic membrane method indicated that the formulations are considered non-irritating. Besides that, permeation through the cow's vaginal mucosa showed that nanoencapsulation promoted I3C controlled release. This way, the developed HG-NC-I3C can be considered a promising approach for trichomoniasis treatment through vaginal administration.


Asunto(s)
Nanocápsulas , Tricomoniasis , Animales , Bovinos , Femenino , Hidrogeles , Indoles , Polisacáridos Bacterianos
2.
Inflammopharmacology ; 28(3): 773-786, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31802387

RESUMEN

The treatment of cutaneous inflammation with topical corticosteroids may cause adverse effects reinforcing the need for therapeutic alternatives to treat inflammatory skin disorders. We investigated the anti-inflammatory effect of oleic acid (OA), a fatty acid of the omega-9 (ω-9) family, and we point out it as an alternative to treat inflammatory skin disorders. OA was incorporated into Lanette®- or Pemulen® TR2-based semisolid preparations and the pH, spreadability, rheological behavior and in vivo anti-inflammatory performance in a UVB radiation-induced skin inflammation model in mice were assessed. The anti-inflammatory activity was verified after single or repeated treatment of the mouse ear following the UVB. The OA action on glucocorticoid receptors was investigated. Both semisolids presented pH values compatible with the deeper skin layers, appropriate spreadability factors, and non-Newtonian pseudoplastic rheological behavior. Pemulen® 3% OA inhibited ear edema with superior efficacy than Lanette® 3% OA and dexamethasone after a single treatment. Pemulen® 3% OA and dexamethasone also reduced inflammatory cell infiltration. After repeated treatments, all formulations decreased the ear edema at 24 h, 48 h and 72 h after UVB. OA in semisolids, especially Pemulen® TR2-based ones, presented suitable characteristics for cutaneous administration and its anti-inflammatory activity seems to occur via glucocorticoid receptors. OA was also capable to reduce croton oil-induced skin inflammation. Besides, the ex vivo skin permeation study indicated that OA reaches the receptor medium, which correlates with a systemic absorption in vivo. The natural compound OA could represent a promising alternative to those available to treat inflammatory skin disorders.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Ácido Oléico/farmacología , Receptores de Glucocorticoides/metabolismo , Piel/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Administración Cutánea , Animales , Dermatitis/tratamiento farmacológico , Dermatitis/metabolismo , Edema/tratamiento farmacológico , Edema/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Piel/metabolismo
3.
Eur J Pharm Sci ; 111: 133-141, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28966097

RESUMEN

This study aimed the development of nanocapsules (NCs) for oral indole-3-carbinol (I3C) administration and evaluation of antinociceptive potential of this compound in its two forms, free and nanoencapsulated, using acute pain models. NCs showed adequate physicochemical characteristics and protected the I3C against UVC radiation exposure. It was observed no chemical bond between I3C and polymer by FTIR. Besides, X-ray and DSC analysis suggested that I3C was molecularly dispersed in NCs. The dialysis bag technique showed that almost 100% of the compound was released from NCs at 360min. Mathematical modeling demonstrated that this release occurred in two rates, with an initial burst effect followed by a slower release of I3C. Regarding the in vivo analysis, time-response curve showed that both forms of I3C caused an inhibition in inflammatory phase of nociception induced by formalin and increased the latency response in hot plate test. Interestingly, NCs were able to prolong the I3C effect in both tests. Furthermore, in dose-response curve, only I3C in its nanoencapsulated form presented effect on inflammatory phase of the formalin test. In conclusion, NCs to I3C incorporation presented adequate nanometric characteristics and prolonged its antinociceptive action in acute pain models tested.


Asunto(s)
Analgésicos/administración & dosificación , Portadores de Fármacos/química , Indoles/administración & dosificación , Nanocápsulas/química , Dolor/tratamiento farmacológico , Rayos Ultravioleta , Analgésicos/efectos de la radiación , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Indoles/efectos de la radiación , Indoles/uso terapéutico , Inflamación , Masculino , Ratones , Dolor/inmunología , Tamaño de la Partícula , Propiedades de Superficie
4.
Mater Sci Eng C Mater Biol Appl ; 74: 279-286, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28254296

RESUMEN

This study aimed to develop poly(ε-caprolactone) nanocapsules loaded with indole-3-cabinol (I3C) using rose hip oil (RHO) or medium chain triglycerides (MCT) as oil core. In vitro radical scavenging activity (DPPH method), hemolysis, and antitumor effects on breast (MCF-7) and glioma (C6) cells were conducted. Preformulation evaluations revealed that RHO is suitable to prepare the nanocapsules considering the log P determination and dissolution/swelling experiments of polymer films. The nanocapsules were prepared and presented adequate physicochemical characteristics as mean size around 250nm, polydispersity index values <0.2, zeta potential negative values and I3C encapsulation efficiency around 42%, without any influence of the oil core (RHO or MCT) on these parameters. However, the photodegradation study demonstrated that RHO nanocapsules showed less degree of I3C degradation in comparison to MCT nanocapsules. The in vitro release profile showed that both nanocapsule suspensions demonstrated an initial burst effect followed by a prolonged I3C release. In addition, the formulations were considered hemocompatibles at 10µg/mL and showed an enhanced radical scavenging activity in comparison to free I3C. Moreover, nanocapsules prepared with RHO increased about two times the antitumor effect of I3C on MCF-7 and C6 cells without significant reduction of astrocyte cell viability. In conclusion, nanocapsule formulations developed in this study might be considered promising for cancer treatment.


Asunto(s)
Antineoplásicos/química , Depuradores de Radicales Libres/química , Indoles/química , Nanocápsulas/química , Aceites Volátiles/química , Rosa/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , Ensayo de Materiales , Nanocápsulas/toxicidad , Fotólisis/efectos de los fármacos , Rosa/metabolismo , Solubilidad , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...