Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(12): 108291, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047081

RESUMEN

TP53, the Guardian of the Genome, is the most frequently mutated gene in human cancers and the functional characterization of its regulation is fundamental. To address this we employ two strategies: machine learning to predict the mutation status of TP53from transcriptomic data, and directed regulatory networks to reconstruct the effect of mutations on the transcipt levels of TP53 targets. Using data from established databases (Cancer Cell Line Encyclopedia, The Cancer Genome Atlas), machine learning could predict the mutation status, but not resolve different mutations. On the contrary, directed network optimization allowed to infer the TP53 regulatory profile across: (1) mutations, (2) irradiation in lung cancer, and (3) hypoxia in breast cancer, and we could observe differential regulatory profiles dictated by (1) mutation type, (2) deleterious consequences of the mutation, (3) known hotspots, (4) protein changes, (5) stress condition (irradiation/hypoxia). This is an important first step toward using regulatory networks for the characterization of the functional consequences of mutations, and could be extended to other perturbations, with implications for drug design and precision medicine.

2.
RNA ; 29(12): 1939-1949, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673469

RESUMEN

Nanopore long-read sequencing enables real-time monitoring and controlling of individual nanopores. This allows us to enrich or deplete specific sequences in DNA sequencing in a process called "adaptive sampling." So far, adaptive sampling (AS) was not applicable to the direct sequencing of RNA. Here, we show that AS is feasible and useful for direct RNA sequencing (DRS), which has its specific technical and biological challenges. Using a well-controlled in vitro transcript-based model system, we identify essential characteristics and parameter settings for AS in DRS, as the superior performance of depletion over enrichment. Here, the efficiency of depletion is close to the theoretical maximum. Additionally, we demonstrate that AS efficiently depletes specific transcripts in transcriptome-wide sequencing applications. Specifically, we applied our AS approach to poly(A)-enriched RNA samples from human-induced pluripotent stem cell-derived cardiomyocytes and mouse whole heart tissue and show efficient 2.5- to 2.8-fold depletion of highly abundant mitochondrial-encoded transcripts. Finally, we characterize depletion and enrichment performance for complex transcriptome subsets, that is, at the level of the entire Chromosome 11, proving the general applicability of direct RNA AS. Our analyses provide evidence that AS is especially useful to enable the detection of lowly expressed transcripts and reduce the sequencing of highly abundant disturbing transcripts.


Asunto(s)
Nanoporos , ARN , Humanos , Animales , Ratones , ARN/genética , Análisis de Secuencia de ARN , ARN Mensajero/genética , Transcriptoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Bioinformatics ; 39(39 Suppl 1): i458-i464, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387163

RESUMEN

MOTIVATION: Alternative RNA splicing plays a crucial role in defining protein function. However, despite its relevance, there is a lack of tools that characterize effects of splicing on protein interaction networks in a mechanistic manner (i.e. presence or absence of protein-protein interactions due to RNA splicing). To fill this gap, we present Linear Integer programming for Network reconstruction using transcriptomics and Differential splicing data Analysis (LINDA) as a method that integrates resources of protein-protein and domain-domain interactions, transcription factor targets, and differential splicing/transcript analysis to infer splicing-dependent effects on cellular pathways and regulatory networks. RESULTS: We have applied LINDA to a panel of 54 shRNA depletion experiments in HepG2 and K562 cells from the ENCORE initiative. Through computational benchmarking, we could show that the integration of splicing effects with LINDA can identify pathway mechanisms contributing to known bioprocesses better than other state of the art methods, which do not account for splicing. Additionally, we have experimentally validated some of the predicted splicing effects that the depletion of HNRNPK in K562 cells has on signalling.


Asunto(s)
Empalme Alternativo , Mapas de Interacción de Proteínas , Empalme del ARN , Benchmarking , Análisis de Datos
4.
J Transl Med ; 20(1): 513, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345035

RESUMEN

BACKGROUND: Despite a recent increase in the number of RNA-seq datasets investigating heart failure (HF), accessibility and usability remain critical issues for medical researchers. We address the need for an intuitive and interactive web application to explore the transcriptional signatures of heart failure with this work. METHODS: We reanalysed the Myocardial Applied Genomics Network RNA-seq dataset, one of the largest publicly available datasets of left ventricular RNA-seq samples from patients with dilated (DCM) or hypertrophic (HCM) cardiomyopathy, as well as unmatched non-failing hearts (NFD) from organ donors and patient characteristics that allowed us to model confounding factors. We analyse differential gene expression, associated pathway signatures and reconstruct signaling networks based on inferred transcription factor activities through integer linear programming. We additionally focus, for the first time, on differential RNA transcript isoform usage (DTU) changes and predict RNA-binding protein (RBP) to target transcript interactions using a Global test approach. We report results for all pairwise comparisons (DCM, HCM, NFD). RESULTS: Focusing on the DCM versus HCM contrast (DCMvsHCM), we identified 201 differentially expressed genes, some of which can be clearly associated with changes in ERK1 and ERK2 signaling. Interestingly, the signs of the predicted activity for these two kinases have been inferred to be opposite to each other: In the DCMvsHCM contrast, we predict ERK1 to be consistently less activated in DCM while ERK2 was more activated in DCM. In the DCMvsHCM contrast, we identified 149 differently used transcripts. One of the top candidates is the O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), which catalyzes a common post-translational modification known for its role in heart arrhythmias and heart hypertrophy. Moreover, we reconstruct RBP - target interaction networks and showcase the examples of CPEB1, which is differentially expressed in the DCMvsHCM contrast. CONCLUSION: Magnetique ( https://shiny.dieterichlab.org/app/magnetique ) is the first online application to provide an interactive view of the HF transcriptome at the RNA isoform level and to include transcription factor signaling and RBP:RNA interaction networks. The source code for both the analyses ( https://github.com/dieterich-lab/magnetiqueCode2022 ) and the web application ( https://github.com/AnnekathrinSilvia/magnetique ) is available to the public. We hope that our application will help users to uncover the molecular basis of heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/genética , Cardiomiopatía Hipertrófica/genética , Factores de Transcripción/genética , ARN
6.
Nat Metab ; 4(6): 693-710, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35760868

RESUMEN

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Pirrolina Carboxilato Reductasas/metabolismo , Neoplasias de la Mama/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Femenino , Glutamina/metabolismo , Humanos , Prolina , delta-1-Pirrolina-5-Carboxilato Reductasa
7.
Eur J Cancer ; 162: 45-55, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953442

RESUMEN

BACKGROUND: Inhibitors of the cyclin-dependent kinases 4 and 6 (CDK4/6i) have significantly improved clinical outcomes in patients with advanced hormone receptor-positive (HR+) breast cancer and have demonstrated favourable antitumour immune responses in preclinical studies. METHODS: Here, we investigated peripheral immune responses to ribociclib in patients with metastatic HR+ breast cancer as a preplanned exploratory subanalysis of the RIBECCA trial (NCT03096847). Peripheral blood mononuclear cells were subjected to immune cell profiling, gene expression analysis of immune-related signatures, and deep T cell receptor profiling before treatment started and after 12 weeks of treatment with ribociclib. RESULTS: Gene expression analysis revealed an upregulation of signatures associated with an activated adaptive immune system and a decrease in immunosuppressive cytokine signalling during treatment with ribociclib. Profiling of peripheral immune cell subpopulations showed a decrease in Treg cell frequencies, which was associated with treatment response. Furthermore, induction of CD4+ naive T cells could be seen, whereas effector and memory T cell populations remained largely unchanged. Correspondingly, T cell repertoire diversity remained mostly unchanged during treatment, although an increase in clonality could be observed in single patients. CONCLUSIONS: We show that treatment with ribociclib has significant effects on the peripheral innate and adaptive immune response in patients with HR+ breast cancer. Our data suggest that these effects lead to an activation of an already existing immune response rather than a de novo induction and make a strong case for future combination strategies of CDK4/6i with immunotherapies to enhance the adaptive immune response in HR+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Aminopiridinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunidad , Leucocitos Mononucleares/metabolismo , Purinas , Receptor ErbB-2/metabolismo
8.
Sci Signal ; 14(703): eabc8579, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609894

RESUMEN

Prostaglandin E2 (PGE2) promotes an immunosuppressive microenvironment in cancer, partly by signaling through four receptors (EP1, EP2, EP3, and EP4) on T cells. Here, we comprehensively characterized PGE2 signaling networks in helper, cytotoxic, and regulatory T cells using a phosphoproteomics and phosphoflow cytometry approach. We identified ~1500 PGE2-regulated phosphosites and several important EP1­4 signaling nodes, including PKC, CK2, PKA, PI3K, and Src. T cell subtypes exhibited distinct signaling pathways, with the strongest signaling in EP2-stimulated CD8+ cells. EP2 and EP4, both of which signal through Gαs, induced similar signaling outputs, but with distinct kinetics and intensity. Functional predictions from the observed phosphosite changes revealed PGE2 regulation of key cellular and immunological processes. Last, network modeling suggested signal integration between the receptors and a substantial contribution from G protein­independent signaling. This study offers a comprehensive view of the different PGE2-regulated phosphoproteomes in T cell subsets, providing a valuable resource for further research on this physiologically and pathophysiologically important signaling system.


Asunto(s)
Receptores de Prostaglandina E , Linfocitos T , Dinoprostona , Transducción de Señal , Análisis de Sistemas
9.
J Proteome Res ; 20(4): 2138-2144, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33682416

RESUMEN

Post-translational modifications of proteins play an important role in the regulation of cellular processes. The mass spectrometry analysis of proteome modifications offers huge potential for the study of how protein inhibitors affect the phosphosignaling mechanisms inside the cells. We have recently proposed PHONEMeS, a method that uses high-content shotgun phosphoproteomic data to build logical network models of signal perturbation flow. However, in its original implementation, PHONEMeS was computationally demanding and was only used to model signaling in a perturbation context. We have reformulated PHONEMeS as an Integer Linear Program (ILP) that is orders of magnitude more efficient than the original one. We have also expanded the scenarios that can be analyzed. PHONEMeS can model data upon perturbation on not only a known target but also deregulated pathways upstream and downstream of any set of deregulated kinases. Finally, PHONEMeS can now analyze data sets with multiple time points, which helps us to obtain better insight into the dynamics of the propagation of signals. We illustrate the value of the new approach on various data sets of medical relevance, where we shed light on signaling mechanisms and drug modes of action.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Espectrometría de Masas , Fosfotransferasas , Proteoma
10.
Mol Syst Biol ; 17(1): e9730, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33502086

RESUMEN

Multi-omics datasets can provide molecular insights beyond the sum of individual omics. Various tools have been recently developed to integrate such datasets, but there are limited strategies to systematically extract mechanistic hypotheses from them. Here, we present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines extensive prior knowledge of signaling, metabolic, and gene regulatory networks with computational methods to estimate activities of transcription factors and kinases as well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for experimental observations across multi-omics datasets. We applied COSMOS to a dataset comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS was able to capture relevant crosstalks within and between multiple omics layers, such as known ccRCC drug targets. We expect that our freely available method will be broadly useful to extract mechanistic insights from multi-omics studies.


Asunto(s)
Carcinoma de Células Renales/genética , Biología Computacional/métodos , Redes Reguladoras de Genes , Neoplasias Renales/genética , Carcinoma de Células Renales/metabolismo , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Metabolómica , Fosfoproteínas
11.
Biomedicines ; 8(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317212

RESUMEN

The reliable authentication of cell lines is a prerequisite for the reproducibility and replicability of experiments. A common method of cell line authentication is the fragment length analysis (FLA) of short-tandem repeats (STR) by capillary electrophoresis. However, this technique is not always accessible and is often costly. Using a microfluidic electrophoresis system, we analyzed the quality and integrity of different murine cell lines by STR profiling. As a proof of concept, we isolated and immortalized hematopoietic progenitor cells (HPC) of various genotypes through retroviral transduction of the fusion of the estrogen receptor hormone-binding domain with the coding sequence of HoxB8. Cell lines were maintained in the HPC state with Flt3 ligand (FL) and estrogen treatment and could be characterized upon differentiation. In a validation cohort, we applied this technique on primary mutant Kras-driven pancreatic cancer cell lines, which again allowed for clear discrimination. In summary, our study provides evidence that FLA of STR-amplicons by microfluidic electrophoresis allows for stringent quality control and the tracking of cross-contaminations in both genetically stable HPC lines and cancer cell lines, making it a simple and cost-efficient alternative to traditional capillary electrophoresis.

12.
Bioinformatics ; 36(16): 4523-4524, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32516357

RESUMEN

SUMMARY: The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large datasets is increasing steadily. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledge network of signalling to obtain dynamic models. CellNOpt is a collection of Bioconductor R packages for building logic models from perturbation data and prior knowledge of signalling networks. We have recently developed new components and refined the existing ones to keep up with the computational demand of increasingly large datasets, including (i) an efficient integer linear programming, (ii) a probabilistic logic implementation for semi-quantitative datasets, (iii) the integration of a stochastic Boolean simulator, (iv) a tool to identify missing links, (v) systematic post-hoc analyses and (vi) an R-Shiny tool to run CellNOpt interactively. AVAILABILITY AND IMPLEMENTATION: R-package(s): https://github.com/saezlab/cellnopt. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Transducción de Señal , Programas Informáticos , Lógica
13.
NPJ Syst Biol Appl ; 5: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728204

RESUMEN

While gene expression profiling is commonly used to gain an overview of cellular processes, the identification of upstream processes that drive expression changes remains a challenge. To address this issue, we introduce CARNIVAL, a causal network contextualization tool which derives network architectures from gene expression footprints. CARNIVAL (CAusal Reasoning pipeline for Network identification using Integer VALue programming) integrates different sources of prior knowledge including signed and directed protein-protein interactions, transcription factor targets, and pathway signatures. The use of prior knowledge in CARNIVAL enables capturing a broad set of upstream cellular processes and regulators, leading to a higher accuracy when benchmarked against related tools. Implementation as an integer linear programming (ILP) problem guarantees efficient computation. As a case study, we applied CARNIVAL to contextualize signaling networks from gene expression data in IgA nephropathy (IgAN), a condition that can lead to chronic kidney disease. CARNIVAL identified specific signaling pathways and associated mediators dysregulated in IgAN including Wnt and TGF-ß, which we subsequently validated experimentally. These results demonstrated how CARNIVAL generates hypotheses on potential upstream alterations that propagate through signaling networks, providing insights into diseases.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/fisiología , Algoritmos , Regulación de la Expresión Génica/fisiología , Humanos , Análisis por Micromatrices , Programación Lineal , Transducción de Señal/genética , Programas Informáticos , Factores de Transcripción/genética
14.
Mol Syst Biol ; 15(8): e8828, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31464372

RESUMEN

Endothelins (EDN) are peptide hormones that activate a GPCR signalling system and contribute to several diseases, including hypertension and cancer. Current knowledge about EDN signalling is fragmentary, and no systems level understanding is available. We investigated phosphoproteomic changes caused by endothelin B receptor (ENDRB) activation in the melanoma cell lines UACC257 and A2058 and built an integrated model of EDNRB signalling from the phosphoproteomics data. More than 5,000 unique phosphopeptides were quantified. EDN induced quantitative changes in more than 800 phosphopeptides, which were all strictly dependent on EDNRB. Activated kinases were identified based on high confidence EDN target sites and validated by Western blot. The data were combined with prior knowledge to construct the first comprehensive logic model of EDN signalling. Among the kinases predicted by the signalling model, AKT, JNK, PKC and AMP could be functionally linked to EDN-induced cell migration. The model contributes to the system-level understanding of the mechanisms underlying the pleiotropic effects of EDN signalling and supports the rational selection of kinase inhibitors for combination treatments with EDN receptor antagonists.


Asunto(s)
Endotelinas/farmacología , Regulación Neoplásica de la Expresión Génica , Melanocitos/metabolismo , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Endotelinas/genética , Endotelinas/metabolismo , Redes Reguladoras de Genes , Humanos , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/patología , Fosfoproteínas/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...