Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 9(6): 2065-2080, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29198826

RESUMEN

Reprogramming to induced pluripotent stem cells (iPSCs) and differentiation of pluripotent stem cells (PSCs) are regulated by epigenetic machinery. Tripartite motif protein 28 (TRIM28), a universal mediator of Krüppel-associated box domain zinc fingers (KRAB-ZNFs), is known to regulate both processes; however, the exact mechanism and identity of participating KRAB-ZNF genes remain unknown. Here, using a reporter system, we show that TRIM28/KRAB-ZNFs alter DNA methylation patterns in addition to H3K9me3 to cause stable gene repression during reprogramming. Using several expression datasets, we identified KRAB-ZNFs (ZNF114, ZNF483, ZNF589) in the human genome that maintain pluripotency. Moreover, we identified target genes repressed by these KRAB-ZNFs. Mechanistically, we demonstrated that these KRAB-ZNFs directly alter gene expression of important developmental genes by modulating H3K9me3 and DNA methylation of their promoters. In summary, TRIM28 employs KRAB-ZNFs to evoke epigenetic silencing of its target differentiation genes via H3K9me3 and DNA methylation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Sitios de Unión , Autorrenovación de las Células/genética , Reprogramación Celular/genética , Metilación de ADN/genética , Represión Epigenética , Regulación del Desarrollo de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas
2.
Contemp Oncol (Pozn) ; 19(1A): A30-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25691819

RESUMEN

Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires profound alterations in the epigenetic landscape. During reprogramming, a change in chromatin structure resets the gene expression and stabilises self-renewal. Reprogramming is a highly inefficient process, in part due to multiple epigenetic barriers. Although many epigenetic factors have already been shown to affect self-renewal and pluripotency in embryonic stem cells (ESCs), only a few of them have been examined in the context of dedifferentiation. In order to improve current protocols of iPSCs generation, it is essential to identify epigenetic drivers and blockages of somatic cell reprogramming.

3.
Mol Biol Rep ; 40(8): 4995-5004, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23677713

RESUMEN

The aim of the study was to analyze the consequence of silencing genes coding for the key subunits of the telomerase complex, i.e. TERT, TERC and TP1 in human breast cancer MCF7 and MDA-MB-231cells. The transfection was performed using Lipofectamine2000 and pooled siRNAs. The cytotoxic and/or antiproliferative effect of siRNA was measured by the SRB assay, the cell cycle was analysed by flow cytometry and DNA fragmentation by TUNEL analysis. Telomerase activity was assessed by TRAP, followed by PAGE and ELISA assays. Telomerase downregulation was also assessed using qPCR in order to estimate the changes in the expression profile of genes engaged in apoptosis. It was revealed that treatment of breast cancer cells with different siRNAs (100 nM) resulted in a cell type and time-dependent effects. The downregulation of telomerase subunits was followed by reduction of telomerase activity down to almost 60% compared to control cells. However, a significant effect was only observed when the TERT subunit was downregulated. Its silencing resulted in a significant (p<0.05) increase of apoptosis (over 10% in MCF7 and about 5% in MDA-MB-231 cells, corresponding to the Annexin V assay) and DNA fragmentation (almost 30% in MCF7 and over 25% in MDA-MB-231 cells). Interestingly, also several proapoptotic genes were induced after the downregulation of the key telomerase subunit, including Bax, Bik or caspase-1 and caspase-14, as well as NGFR and TNFSF10 which were upregulated twice and more.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Neoplasias de la Mama/enzimología , Fragmentación del ADN , Regulación Enzimológica de la Expresión Génica/fisiología , Telomerasa/metabolismo , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Etiquetado Corte-Fin in Situ , Células MCF-7 , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , Telomerasa/genética , Transfección
4.
Biochem Cell Biol ; 89(4): 359-76, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21790308

RESUMEN

Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.


Asunto(s)
Regulación de la Expresión Génica , Telomerasa/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Terapia Genética , Hormonas Esteroides Gonadales/metabolismo , Humanos , Neoplasias/terapia , Telomerasa/metabolismo , Telómero/metabolismo , Transcripción Genética
5.
Mol Biol Rep ; 38(5): 3339-49, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21086176

RESUMEN

Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control but also other factors contributing to the enzyme phosphorylation status, assembling or complex subunits transport. Thus, we show that the telomerase expression targeting cannot be the only possibility to shorten telomeres and induce cell apoptosis. It is important especially since the transcription expression is not always correlated with the enzyme activity which might result in transcription modulation failure or a possibility for the gene therapy to be overcome. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms that take place after telomerase subunits coding genes transcription. Thus we show the possible mechanisms of telomerase activity regulation which might become attractive anticancer therapy targets.


Asunto(s)
Telomerasa/metabolismo , Empalme Alternativo , Activación Enzimática , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Telomerasa/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...