Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2061, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267530

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target. However, what extent of MSH3 protein reduction is needed to attenuate somatic CAG expansions and elicit therapeutic benefits in HD disease models is less clear. In our study, we employed potent di-siRNAs to silence mouse Msh3 mRNA expression in a dose-dependent manner in HdhQ111/+ mice and correlated somatic Htt CAG instability with MSH3 protein levels from simultaneously isolated DNA and protein after siRNA treatment. Our results reveal a linear correlation with a proportionality constant of ~ 1 between the prevention of somatic Htt CAG expansions and MSH3 protein expression in vivo, supporting MSH3 as a rate-limiting step in somatic expansions. Intriguingly, despite a 75% reduction in MSH3 protein levels, striatal nuclear HTT aggregates remained unchanged. We also note that evidence for nuclear Msh3 mRNA that is inaccessible to RNA interference was found, and that MSH6 protein in the striatum was upregulated following MSH3 knockdown in HdhQ111/+ mice. These results provide important clues to address critical questions for the development of therapeutic molecules targeting MSH3 as a potential therapeutic target for HD.


Asunto(s)
Cuerpo Estriado , Enfermedad de Huntington , Animales , Ratones , Exones , Enfermedad de Huntington/genética , Interferencia de ARN , ARN Mensajero , ARN Interferente Pequeño/genética
2.
NPJ Parkinsons Dis ; 9(1): 121, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567894

RESUMEN

Individuals with Parkinson's disease (PD) typically receive a diagnosis once they have developed motor symptoms, at which point there is already significant loss of substantia nigra dopamine neurons, α-synuclein accumulation in surviving neurons, and neuroinflammation. Consequently, the point of clinical presentation may be too late to initiate disease-modifying therapy. In contrast to this clinical reality, animal models often involve acute neurodegeneration and potential therapies are tested concurrently or shortly after the pathogenic insult has begun rather than later when diagnostic clinical symptoms emerge. Therefore, we sought to develop a model that reflects the clinical situation more accurately. Middle-aged rats (7-9 months-old) received a single daily intraperitoneal injection of rotenone for 5 consecutive days and were observed over the next 8-9 months. Rotenone-treated rats showed transient motor slowing and postural instability during exposure but recovered within 9 days of rotenone cessation. Rats remained without behavioral deficits for 3-4 months, then developed progressive motor abnormalities over the ensuing months. As motor abnormalities began to emerge 3 months after rotenone exposure, there was significant loss of nigral dopaminergic neurons and significant microglial activation. There was delayed accumulation of α-synuclein in neurons of the substantia nigra and frontal cortex, which was maximal at 9 months post-rotenone. In summary, a brief temporally-remote exposure to rotenone causes delayed and progressive behavioral and neuropathological changes similar to Parkinson's disease. This model mimics the human clinical situation, in which pathogenesis is well-established by the time diagnostic motor deficits appear. As such, this model may provide a more relevant experimental system in which to test disease-modifying therapeutics.

3.
NPJ Parkinsons Dis ; 8(1): 61, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610264

RESUMEN

ß2-adrenoreceptor (ß2AR) agonists have been associated with a decreased risk of developing Parkinson's disease (PD) and are hypothesized to decrease expression of both alpha-synuclein mRNA (Snca) and protein (α-syn). Effects of ß2AR agonist clenbuterol on the levels of Snca mRNA and α-syn protein were evaluated in vivo (rats and mice) and in rat primary cortical neurons by two independent laboratories. A modest decrease in Snca mRNA in the substantia nigra was observed after a single acute dose of clenbuterol in rats, however, this decrease was not maintained after multiple doses. In contrast, α-syn protein levels remained unchanged in both single and multiple dosing paradigms. Furthermore, clenbuterol did not decrease Snca in cultured rat primary cortical neurons, or decrease Snca or α-syn in mice. Additionally, compared to the single-dose paradigm, repeat dosing resulted in substantially lower levels of clenbuterol in plasma and brain tissue in rodents. Based on our observations of a transient decrease in Snca and no effect on α-syn protein in this preclinical study, these data support the conclusion that clenbuterol is not likely a viable disease-modifying strategy for PD.

4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34326260

RESUMEN

Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson's disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient-derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer-monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD-causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)-human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Glucosilceramidasa/metabolismo , alfa-Sinucleína/metabolismo , Animales , Animales Recién Nacidos , Glucosilceramidasa/genética , Metabolismo de los Lípidos , Lípidos/química , Aprendizaje por Laberinto , Ratones , Actividad Motora , Proteínas Recombinantes , alfa-Sinucleína/química
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443159

RESUMEN

Inositol-1,4,5-triphosphate (IP3) kinase B (ITPKB) is a ubiquitously expressed lipid kinase that inactivates IP3, a secondary messenger that stimulates calcium release from the endoplasmic reticulum (ER). Genome-wide association studies have identified common variants in the ITPKB gene locus associated with reduced risk of sporadic Parkinson's disease (PD). Here, we investigate whether ITPKB activity or expression level impacts PD phenotypes in cellular and animal models. In primary neurons, knockdown or pharmacological inhibition of ITPKB increased levels of phosphorylated, insoluble α-synuclein pathology following treatment with α-synuclein preformed fibrils (PFFs). Conversely, ITPKB overexpression reduced PFF-induced α-synuclein aggregation. We also demonstrate that ITPKB inhibition or knockdown increases intracellular calcium levels in neurons, leading to an accumulation of calcium in mitochondria that increases respiration and inhibits the initiation of autophagy, suggesting that ITPKB regulates α-synuclein pathology by inhibiting ER-to-mitochondria calcium transport. Furthermore, the effects of ITPKB on mitochondrial calcium and respiration were prevented by pretreatment with pharmacological inhibitors of the mitochondrial calcium uniporter complex, which was also sufficient to reduce α-synuclein pathology in PFF-treated neurons. Taken together, these results identify ITPKB as a negative regulator of α-synuclein aggregation and highlight modulation of ER-to-mitochondria calcium flux as a therapeutic strategy for the treatment of sporadic PD.


Asunto(s)
Calcio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , alfa-Sinucleína/metabolismo , Animales , Autofagia/genética , Retículo Endoplásmico/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación/genética , Transducción de Señal/genética , Sinucleinopatías/genética , Sinucleinopatías/metabolismo
6.
PLoS One ; 15(12): e0243655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33315879

RESUMEN

X-linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease linked to an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This SVA insertion induces aberrant TAF1 splicing and partial intron retention, thereby decreasing levels of the full-length transcript. Here we sought to determine if these altered transcriptional dynamics caused by the SVA are also accompanied by local changes in histone acetylation, given that these modifications influence gene expression. Because TAF1 protein may itself exhibit histone acetyltransferase activity, we also examined whether decreased TAF1 expression in XDP cell lines and post-mortem brain affects global levels of acetylated histone H3 (AcH3). The results demonstrate that total AcH3 are not altered in XDP post-mortem prefrontal cortex or cell lines. We also did not detect local differences in AcH3 associated with TAF1 exons or intronic sites flanking the SVA insertion. There was, however, a decrease in AcH3 association with the exon immediately proximal to the intronic SVA, and this decrease was normalized by CRISPR/Cas-excision of the SVA. Collectively, these data suggest that the SVA insertion alters histone status in this region, which may contribute to the dysregulation of TAF1 expression.


Asunto(s)
Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Histona Acetiltransferasas/genética , Histonas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Acetilación , Células Cultivadas , Trastornos Distónicos/metabolismo , Fibroblastos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Intrones , Retroelementos
7.
Muscle Nerve ; 62(2): 272-283, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32369618

RESUMEN

BACKGROUND: The exact mechanisms underlying neuroinflammation and how they contribute to amyotrophic lateral sclerosis (ALS) pathogenesis remain unclear. One possibility is the secretion of neurotoxic factors, such as lipocalin-2 (LCN2), that lead to neuronal death. METHODS: LCN2 levels were measured in human postmortem tissue using Western blot, quantitative real time polymerase chain reaction, and immunofluorescence, and in plasma by enzyme-linked immunosorbent assay. SH-SY5Y cells were used to test the pro-inflammatory effects of LCN2. RESULTS: LCN2 is increased in ALS postmortem motor cortex, spinal cord, and plasma. Furthermore, we identified several LCN2 variants in ALS patients that may contribute to disease pathogenesis. Lastly, while LCN2 treatment caused cell death and increased pro-inflammatory markers, treatment with an anti-LCN2 antibody prevented these responses in vitro. CONCLUSIONS: LCN2 upregulation in ALS postmortem samples and plasma may be an upstream event for triggering neuroinflammation and neuronal death.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Inflamación/metabolismo , Lipocalina 2/genética , Corteza Motora/metabolismo , Médula Espinal/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Western Blotting , Estudios de Casos y Controles , Muerte Celular , Línea Celular Tumoral , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas In Vitro , Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/metabolismo , Lipocalina 2/farmacología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Sci Rep ; 8(1): 11355, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054496

RESUMEN

The Hippo signaling pathway is involved in organ size regulation and tumor suppression. Although inhibition of Hippo leads to tumorigenesis, activation of Hippo may play a role in neurodegeneration. Specifically, activation of the upstream regulator, mammalian sterile 20 (STE20)-like kinase 1 (MST1), reduces activity of the transcriptional co-activator Yes-Associated Protein (YAP), thereby mediating oxidative stress-induced neuronal death. Here, we investigated the possible role of this pathway in Huntington's disease (HD) pathogenesis. Our results demonstrate a significant increase in phosphorylated MST1, the active form, in post-mortem HD cortex and in the brains of CAG knock-in HdhQ111/Q111 mice. YAP nuclear localization was also decreased in HD post-mortem cortex and in neuronal stem cells derived from HD patients. Moreover, there was a significant increase in phosphorylated YAP, the inactive form, in HD post-mortem cortex and in HdhQ111/Q111 brain. In addition, YAP was found to interact with huntingtin (Htt) and the chaperone 14-3-3, however this interaction was not altered in the presence of mutant Htt. Lastly, YAP/TEAD interactions and expression of Hippo pathway genes were altered in HD. Together, these results demonstrate that activation of MST1 together with a decrease in nuclear YAP could significantly contribute to transcriptional dysregulation in HD.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Modelos Animales de Enfermedad , Vía de Señalización Hippo , Humanos , Células-Madre Neurales/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción , Transcripción Genética , Proteínas Señalizadoras YAP
9.
PLoS One ; 11(10): e0164103, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27716798

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease caused by loss of motor neurons. ALS patients experience rapid deterioration in muscle function with an average lifespan of 3-5 years after diagnosis. Currently, the most effective therapeutic only extends lifespan by a few months, thus highlighting the need for new and improved therapies. Neurotrophic factors (NTFs) are important for neuronal development, maintenance, and survival. NTF treatment has previously shown efficacy in pre-clinical ALS models. However, clinical trials using NTFs produced no major improvements in ALS patients, due in part to the limited blood brain barrier (BBB) penetration. In this study we assessed the potential neuroprotective effects of a novel class of compounds known as MicroNeurotrophins (MNTs). MNTs are derivatives of Dehydroepiandrosterone (DHEA), an endogenous neurosteroid that can cross the BBB and bind to tyrosine kinase receptors mimicking the pro-survival effects of NTFs. Here we sought to determine whether MNTs were neuroprotective in two different models of ALS. Our results demonstrate that BNN27 (10 µM) attenuated loss of motor neurons co-cultured with astrocytes derived from human ALS patients with SOD1 mutations via the reduction of oxidative stress. Additionally, in the G93A SOD1 mouse, BNN27 (10 mg/kg) treatment attenuated motor behavioral impairment in the paw grip endurance and rotarod tasks at postnatal day 95 in female but not male mice. In contrast, BNN27 (10 mg/kg and 50 mg/kg) treatment did not alter any other behavioral outcome or neuropathological marker in male or female mice. Lastly, BNN27 was not detected in post-mortem brain or spinal cord tissue of treated mice due to the rapid metabolism of BNN27 by mouse hepatocytes relative to human hepatocytes. Together, these findings demonstrate that BNN27 treatment failed to yield significant neuroprotective effects in the G93A SOD1 model likely due to its rapid rate of metabolism in mice.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/mortalidad , Astrocitos/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Técnicas de Cocultivo/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Fármacos Neuroprotectores/farmacología , Fenotipo , Médula Espinal/efectos de los fármacos
10.
J Neurosci ; 36(20): 5472-88, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194328

RESUMEN

UNLABELLED: Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT: An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Globo Pálido/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Potenciales Sinápticos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Globo Pálido/citología , Globo Pálido/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Optogenética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología
11.
J Neurosci ; 35(34): 11830-47, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311767

RESUMEN

Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT: Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the markers parvalbumin and Npas1. Our study provides evidence that parvalbumin and Npas1 neurons have different topologies within the basal ganglia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Globo Pálido/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/clasificación , Neuronas/metabolismo , Parvalbúminas/biosíntesis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Femenino , Globo Pálido/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/análisis , Neuronas/química , Parvalbúminas/análisis
12.
J Huntingtons Dis ; 4(1): 1-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25813218

RESUMEN

Transcriptional dysregulation is an early event and may be an important pathological mechanism in Huntington's disease (HD). However, the exact process that leads to alterations in gene expression in HD is not clear. One potential mechanism underlying transcriptional abnormalities in HD may be epigenetic alterations which regulate gene expression without changing the DNA sequence. Previous work has demonstrated that epigenetic marks, such as DNA methylation and post-translational modifications of histone proteins, are significantly altered in HD cellular and animal models as well as HD patients. Furthermore, studies have shown a therapeutic role for histone deacetylase (HDAC) inhibitors in numerous HD …models. Here, we review a range of studies describing epigenetic changes in HD as well as several potential therapeutics that target aberrant epigenetic alterations in HD.


Asunto(s)
Epigénesis Genética , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico
13.
J Neurosci ; 32(27): 9124-32, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764222

RESUMEN

Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice--mice possessing a BAC transgene with a D(2) dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP) reporter--had abnormal striatal gene expression, physiology, and motor behavior. Unlike most of the work using BAC mice, this interesting study relied upon mice backcrossed on the outbred Swiss Webster (SW) strain that were homozygous for the Drd2-eGFP BAC transgene. The experiments reported here were conducted to determine whether mouse strain or zygosity was a factor in the reported abnormalities. As reported, SW mice were very sensitive to transgene expression. However, in more commonly used inbred strains of mice (C57BL/6, FVB/N) that were hemizygous for the transgene, the Drd2-eGFP BAC transgene did not alter striatal gene expression, physiology, or motor behavior. Thus, the use of inbred strains of mice that are hemizygous for the Drd2 BAC transgene provides a reliable tool for studying basal ganglia function.


Asunto(s)
Cuerpo Estriado/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Ratones Transgénicos/genética , Fenotipo , Receptores de Dopamina D2/genética , Animales , Animales no Consanguíneos , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/metabolismo , Enfermedades de los Ganglios Basales/fisiopatología , Conducta Animal/fisiología , Cromosomas Artificiales Bacterianos/genética , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hemicigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Actividad Motora/genética , Especificidad de la Especie
14.
Behav Brain Res ; 230(2): 309-16, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22178078

RESUMEN

Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by marked impairments in motor function caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Animal models of PD have traditionally been based on toxins, such as 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that selectively lesion dopaminergic neurons. Motor impairments from 6-OHDA lesions of SNc neurons are well characterized in rats, but much less work has been done in mice. In this study, we compare the effectiveness of a series of drug-free behavioral tests in assessing sensorimotor impairments in the unilateral 6-OHDA mouse model, including six tests used for the first time in this PD mouse model (the automated treadmill "DigiGait" test, the challenging beam test, the adhesive removal test, the pole test, the adjusting steps test, and the test of spontaneous activity) and two tests used previously in 6-OHDA-lesioned mice (the limb-use asymmetry "cylinder" test and the manual gait test). We demonstrate that the limb-use asymmetry, challenging beam, pole, adjusting steps, and spontaneous activity tests are all highly robust assays for detecting sensorimotor impairments in the 6-OHDA mouse model. We also discuss the use of the behavioral tests for specific experimental objectives, such as simple screening for well-lesioned mice in studies of PD cellular pathophysiology or comprehensive behavioral analysis in preclinical therapeutic testing using a battery of sensorimotor tests.


Asunto(s)
Adrenérgicos/farmacología , Modelos Animales de Enfermedad , Oxidopamina/farmacología , Trastornos Parkinsonianos/fisiopatología , Trastornos Psicomotores/inducido químicamente , Desempeño Psicomotor/efectos de los fármacos , Animales , Neuronas Dopaminérgicas/patología , Trastornos Neurológicos de la Marcha/inducido químicamente , Masculino , Haz Prosencefálico Medial/patología , Ratones , Ratones Endogámicos C57BL , Sustancia Negra/patología
15.
Nat Neurosci ; 14(1): 85-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21076425

RESUMEN

Parkinson's disease is a common neurodegenerative disorder characterized by a profound motor disability that is traceable to the emergence of synchronous, rhythmic spiking in neurons of the external segment of the globus pallidus (GPe). The origins of this pathophysiology are poorly defined for the generation of pacemaking. After the induction of a parkinsonian state in mice, there was a progressive decline in autonomous GPe pacemaking, which normally serves to desynchronize activity. The loss was attributable to the downregulation of an ion channel that is essential in pacemaking, the hyperpolarization and cyclic nucleotide-gated (HCN) channel. Viral delivery of HCN2 subunits restored pacemaking and reduced burst spiking in GPe neurons. However, the motor disability induced by dopamine (DA) depletion was not reversed, suggesting that the loss of pacemaking was a consequence, rather than a cause, of key network pathophysiology, a conclusion that is consistent with the ability of L-type channel antagonists to attenuate silencing after DA depletion.


Asunto(s)
Canalopatías/fisiopatología , Globo Pálido/fisiopatología , Canales Iónicos/fisiología , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Animales , Calcio/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Regulación hacia Abajo , Vectores Genéticos/administración & dosificación , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microinyecciones , Neuronas/metabolismo , Oxidopamina , Canales de Potasio , Sustancia Negra/metabolismo
16.
Amyotroph Lateral Scler ; 9(4): 229-37, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18608091

RESUMEN

The objective was to test the hypothesis that a described association between homozygosity for a 50bp deletion in the SOD1 promoter 1684bp upstream of the SOD1 ATG and an increased age of onset in SALS can be replicated in additional SALS and control sample sets from other populations. Our second objective was to examine whether this deletion attenuates expression of the SOD1 gene. Genomic DNA from more than 1200 SALS cases from Ireland, Scotland, Quebec and the USA was genotyped for the 50bp SOD1 promoter deletion. Reporter gene expression analysis, electrophoretic mobility shift assays and chromatin immunoprecipitation studies were utilized to examine the functional effects of the deletion. The genetic association for homozygosity for the promoter deletion with an increased age of symptom onset was confirmed overall in this further study (p=0.032), although it was only statistically significant in the Irish subset, and remained highly significant in the combined set of all cohorts (p=0.001). Functional studies demonstrated that this polymorphism reduces the activity of the SOD1 promoter by approximately 50%. In addition we revealed that the transcription factor SP1 binds within the 50bp deletion region in vitro and in vivo. Our findings suggest the hypothesis that this deletion reduces expression of the SOD1 gene and that levels of the SOD1 protein may modify the phenotype of SALS within selected populations.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Superóxido Dismutasa/genética , Edad de Inicio , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/epidemiología , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Expresión Génica , Predisposición Genética a la Enfermedad , Genotipo , Homocigoto , Humanos , Irlanda/epidemiología , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo Genético , Quebec/epidemiología , Factores de Riesgo , Escocia/epidemiología , Factor de Transcripción Sp1/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Estados Unidos/epidemiología
17.
Hum Mol Genet ; 16(11): 1293-306, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17409194

RESUMEN

Transcriptional dysregulation plays a major role in the pathology of Huntington's disease (HD). However, the mechanisms causing selective downregulation of genes remain unknown. Histones regulate chromatin structure and thereby control gene expression; recent studies have demonstrated a therapeutic role for histone deacetylase (HDAC) inhibitors in polyglutamine diseases. This study demonstrates that despite no change in overall acetylated histone levels, histone H3 is hypo-acetylated at promoters of downregulated genes in R6/2 mice, ST14a and STHdh cells, as demonstrated by in vivo chromatin immunoprecipitation. In addition, HDAC inhibitor treatment increases association of acetylated histones with downregulated genes and corrects mRNA abnormalities. In contrast, there is a decrease in mRNA levels in wild-type cells following treatment with a histone acetyltransferase inhibitor. Although changes in histone acetylation correlate with decreased gene expression, histone hypo-acetylation may be a late event, as no hypo-acetylation is observed in 4-week-old R6/2 mice. Nevertheless, treatment with HDAC inhibitors corrects mRNA abnormalities through modification of histone proteins and may prove to be of therapeutic value in HD.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Histonas/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Acetilación , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
18.
Acta Neuropathol ; 113(5): 513-20, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17357802

RESUMEN

The tau protein, well known as the primary component of neurofibrillary tangles, also comprises the Pick bodies found in Pick's disease (PiD) and the glial lesions associated with progressive supranuclear palsy (PSP) and cortico-basal ganglionic degeneration (CBD). Many of the tau alterations that are characteristic of Alzheimer's disease have also been identified in PSP and CBD. In this report, we examine three non-AD tauopathies (PSP, CBD, and PiD) for the presence of two specific tau alterations, phosphorylation at Ser422 and truncation at Asp421. We find that truncation at Asp421 is an alteration that is unique to neuronal lesions, occurring in Pick bodies as well as in neurofibrillary tangles, but not in lesions associated with glia. Conversely, phosphorylation at Ser422 is not only present in all these lesions, but identifies additional glial and neuronal pathology in disease-susceptible cortical regions. These results suggest that the molecular alterations of tau that occur during the initial process of tangle formation in AD are similar in non-AD tauopathies, but the middle and later changes are not common to all diseases.


Asunto(s)
Enfermedades de los Ganglios Basales/metabolismo , Enfermedad de Pick/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Ácido Aspártico/metabolismo , Astrocitos/metabolismo , Enfermedades de los Ganglios Basales/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Fosforilación , Enfermedad de Pick/patología , Serina/metabolismo , Parálisis Supranuclear Progresiva/patología
19.
Neurobiol Dis ; 22(2): 233-41, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16442295

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by expansion of a polyglutamine tract within the huntingtin protein. Transcriptional dysregulation has been implicated in HD pathogenesis; recent evidence suggests a defect in Sp1-mediated transcription. We used chromatin immunoprecipitation (ChIP) assays followed by real-time PCR to quantify the association of Sp1 with individual genes. We find that, despite normal protein levels and normal to increased overall nuclear binding activity, Sp1 has decreased binding to specific promoters of susceptible genes in transgenic HD mouse brain, in striatal HD cells, and in human HD brain. Genes whose mRNA levels are decreased in HD have abnormal Sp1-DNA binding, whereas genes with unchanged mRNA levels have normal levels of Sp1 association. Moreover, the altered binding seen with Sp1 is not found with another transcription factor, NF-Y. These findings suggest that mutant huntingtin dissociates Sp1 from target promoters, inhibiting transcription of specific genes.


Asunto(s)
Química Encefálica/genética , Encéfalo/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Enfermedad de Huntington/genética , Factor de Transcripción Sp1/genética , Animales , Sitios de Unión/genética , Encéfalo/fisiopatología , Células Cultivadas , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Elementos Reguladores de la Transcripción/genética , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...