Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 922106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874028

RESUMEN

Cytokinins (CKs) regulate numerous plant developmental processes, including photosynthesis and leaf senescence. Isopentenyltransferase (IPT) is a rate-limiting enzyme in the CK-biosynthesis pathway. We overexpressed ipt under tissue-specific promoters to study the long-range effect of CK on the functioning of tomato source leaves. Photosynthetic activity over time provided the measure for leaf aging. Significantly delayed leaf senescence was observed in plants expressing ipt under a root-specific promoter, but not in those expressing the gene under a source leaf-specific promoter. The root-derived influence on leaf aging was further confirmed by grafting experiments. CK concentration in source leaves of both transgenic lines increased significantly, with different proportions of its various derivatives. On the other hand, root CK concentration was only slightly elevated. Nevertheless, the significant change in the proportion of CK derivatives in the root indicated that CK biosynthesis and metabolism were altered. Partial leaf defoliation upregulates photosynthetic rate in the remaining leaf; however, overexpression of ipt in either tissues eliminated this response. Interestingly, stem girdling also eliminated the photosynthetic response. Taken together, our findings suggest that leaf senescence is regulated by a CK-mediated root-shoot communication network. We propose that CK-mediated signal is translocated to the leaf via the xylem where it alters CK biosynthesis, resulting in delayed senescence.

2.
Plant Signal Behav ; 15(2): 1712543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31916482

RESUMEN

Photosynthetic activity is affected by environmental factors and endogenous signals controlled by the source-sink relationship. We recently showed upregulated photosynthetic rate following partial defoliation under favorable environmental conditions. Here, we examined the influence of partial defoliation on the remaining leaves' function in tomato plants under nutrient deficiency. The effect of partial defoliation was more pronounced under limited mineral supply vs. favorable conditions. Reduced source-sink ratio resulted in increased stomatal conductance and transpiration rate, as well as higher photosystem II efficiency. Although chlorophyll concentration was significantly reduced under limited nutrient supply, the photosynthetic rate in the remaining leaf was similar to that measured under normal fertilization. Expression of genes involved in the phloem loading of assimilated sugars was downregulated in the remaining source leaf of unfertilized plants, 15 d after partial defoliation; in fertilized plants, these genes' expression was similar in control and partially defoliated plants. We propose that at early stage, the additional carbon assimilated in the remaining leaf is devoted to increasing source size rather than sink growth. The size increase of the remaining leaf in unfertilized plants was not sufficient to rebalance the source-sink ratio, resulting in inhibited sugar export and further carbohydrate allocation in the remaining leaf.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Citocininas/metabolismo , Minerales/metabolismo
3.
J Exp Bot ; 71(1): 247-257, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504736

RESUMEN

Photosynthetic activity is affected by exogenous and endogenous inputs, including source-sink balance. Reducing the source to sink ratio by partial defoliation or heavy shading resulted in significant elevation of the photosynthetic rate in the remaining leaf of tomato plants within 3 d. The remaining leaf turned deep green, and its area increased by almost 3-fold within 7 d. Analyses of photosynthetic activity established up-regulation due to increased carbon fixation activity in the remaining leaf, rather than due to altered water balance. Moreover, senescence of the remaining leaf was significantly inhibited. As expected, carbohydrate concentration was lower in the remaining leaf than in the control leaves; however, expression of genes involved in sucrose export was significantly lower. These results suggest that the accumulated fixed carbohydrates were primarily devoted to increasing the size of the remaining leaf. Detailed analyses of the cytokinin content indicated that partial defoliation alters cytokinin biosynthesis in the roots, resulting in a higher concentration of trans-zeatin riboside, the major xylem-translocated molecule, and a higher concentration of total cytokinin in the remaining leaf. Together, our findings suggest that trans-zeatin riboside acts as a signal molecule that traffics from the root to the remaining leaf to alter gene expression and elevate photosynthetic activity.


Asunto(s)
Citocininas/fisiología , Fotosíntesis , Hojas de la Planta/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Transducción de Señal , Solanum lycopersicum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA