Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comput Neurosci ; 51(2): 263-282, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37140691

RESUMEN

To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción/fisiología , Neuronas/fisiología , Canales Iónicos/fisiología , Modelos Lineales
2.
Nat Commun ; 13(1): 4114, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840593

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are transmembrane proteins that are activated by the neurotransmitter glutamate and are found at most excitatory vertebrate synapses. NMDAR channel blockers, an antagonist class of broad pharmacological and clinical significance, inhibit by occluding the NMDAR ion channel. A vast literature demonstrates that NMDAR channel blockers, including MK-801, phencyclidine, ketamine, and the Alzheimer's disease drug memantine, can bind and unbind only when the NMDAR channel is open. Here we use electrophysiological recordings from transfected tsA201 cells and cultured neurons, NMDAR structural modeling, and custom-synthesized compounds to show that NMDAR channel blockers can enter the channel through two routes: the well-known hydrophilic path from extracellular solution to channel through the open channel gate, and also a hydrophobic path from plasma membrane to channel through a gated fenestration ("membrane-to-channel inhibition" (MCI)). Our demonstration that ligand-gated channels are subject to MCI, as are voltage-gated channels, highlights the broad expression of this inhibitory mechanism.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Maleato de Dizocilpina , Canales Iónicos , Ketamina/farmacología , Memantina/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Neuropharmacology ; 137: 344-358, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29793153

RESUMEN

Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg2+ also binds. Under physiological conditions, Mg2+ increases the IC50s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg2+.


Asunto(s)
Ketamina/farmacología , Magnesio/farmacología , Memantina/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Sitios de Unión , Cationes Bivalentes/metabolismo , Cationes Bivalentes/farmacología , Células HEK293 , Humanos , Magnesio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Transfección
4.
J Neurosci ; 37(40): 9686-9704, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28877967

RESUMEN

Memantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. However, the basis for preferential NMDAR inhibition depending on subcellular location has not been investigated systematically. We integrated recordings from heterologously expressed single NMDAR subtypes, kinetic modeling, and recordings of synaptically evoked NMDAR responses in acute brain slices to investigate mechanisms by which channel blockers may distinguish NMDAR subpopulations. We found that memantine and ketamine differentially alter NMDAR desensitization and that memantine stabilizes a Ca2+-dependent desensitized state. As a result, inhibition by memantine of GluN1/2A receptors in tsA201 cells and of native synaptic NMDARs in cortical pyramidal neurons from mice of either sex increased in conditions that enhanced intracellular Ca2+ accumulation. Therefore, differential inhibition by memantine and ketamine based on NMDAR location is likely to result from location dependence of the intensity and duration of NMDAR activation. Modulation of Ca2+-dependent NMDAR desensitization is an unexplored mechanism of inhibitory action with the potential to endow drugs with NMDAR selectivity that leads to superior clinical profiles. Our results suggest that designing compounds to target specific receptor states, rather than specific receptor types, may be a viable strategy for future drug development.SIGNIFICANCE STATEMENT Memantine and ketamine are NMDA receptor (NMDAR) channel-blocking drugs with divergent clinical effects. Understanding mechanistically their differential actions may advance our understanding of nervous system disorders and suggest strategies for the design of more effective drugs. Here, we show that memantine and ketamine have contrasting effects on NMDAR desensitization. Ketamine binding decreases occupancy of desensitized states of the GluN1/2B NMDAR subtype. In contrast, memantine binding increases occupancy of GluN1/2A and native NMDAR desensitized states entered after accumulation of intracellular Ca2+, a novel inhibitory mechanism. These properties may contribute to inhibition of distinct NMDAR subpopulations by memantine and ketamine and help to explain their differential clinical effects. Our results suggest stabilization of Ca2+-dependent desensitized states as a new strategy for pharmaceutical neuroprotection.


Asunto(s)
Ketamina/farmacología , Memantina/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo
5.
Front Mol Neurosci ; 10: 150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611584

RESUMEN

Excitatory amino acid transporters (EAATs) are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3) and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or "leak" channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.

6.
Aging Cell ; 14(4): 635-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25990970

RESUMEN

Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5(+) cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5(+) amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5(+) amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5(+) amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age-related retinal degenerative diseases.


Asunto(s)
Células Madre Adultas/metabolismo , Envejecimiento/metabolismo , Células Amacrinas/metabolismo , Neurogénesis/genética , Receptores Acoplados a Proteínas G/genética , Regeneración/genética , Células Madre Adultas/citología , Envejecimiento/genética , Células Amacrinas/citología , Animales , Diferenciación Celular , Proliferación Celular , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
J Physiol ; 593(1): 83-95, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25556790

RESUMEN

NMDA receptors (NMDARs) are a class of ionotropic glutamate receptors (iGluRs) that are essential for neuronal development, synaptic plasticity, learning and cell survival. Several features distinguish NMDARs from other iGluRs and underlie the crucial roles NMDARs play in nervous system physiology. NMDARs display slow deactivation kinetics, are highly Ca(2+) permeable, and require depolarization to relieve channel block by external Mg(2+) ions, thereby making them effective coincidence detectors. These properties and others differ among NMDAR subtypes, which are defined by the subunits that compose the receptor. NMDARs, which are heterotetrameric, commonly are composed of two GluN1 subunits and two GluN2 subunits, of which there are four types, GluN2A-D. 'Diheteromeric' NMDARs contain two identical GluN2 subunits. Gating and ligand-binding properties (e.g. deactivation kinetics) and channel properties (e.g. channel block by Mg(2+)) depend strongly on the GluN2 subunit contained in diheteromeric NMDARs. Recent work shows that two distinct regions of GluN2 subunits control most diheteromeric NMDAR subtype-dependent properties: the N-terminal domain is responsible for most subtype dependence of gating and ligand-binding properties; a single residue difference between GluN2 subunits at a site termed the GluN2 S/L site is responsible for most subtype dependence of channel properties. Thus, two structurally and functionally distinct regions underlie the majority of subtype dependence of NMDAR properties. This topical review highlights recent studies of recombinant diheteromeric NMDARs that uncovered the involvement of the N-terminal domain and of the GluN2 S/L site in the subtype dependence of NMDAR properties.


Asunto(s)
Subunidades de Proteína/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Subunidades de Proteína/química , Receptores de N-Metil-D-Aspartato/química
8.
Curr Opin Pharmacol ; 20: 54-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25462293

RESUMEN

The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped sustain optimism that glutamate receptors represent viable targets for development of therapeutic drugs. Both memantine and ketamine antagonize N-methyl-D-aspartate receptors (NMDARs), a glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research suggests that preferential inhibition by memantine and ketamine of distinct NMDAR subpopulations may contribute to the drugs' differential clinical effects. Here we review studies that shed light on possible explanations for differences between the effects of memantine and ketamine.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Memantina/farmacología , Animales , Diseño de Fármacos , Humanos , Terapia Molecular Dirigida , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
9.
Methods Mol Biol ; 1183: 23-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25023300

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that are essential for synaptic plasticity, learning and memory. Dysfunction of NMDARs has been implicated in many nervous system disorders; therefore, pharmacological modulation of NMDAR activity has great therapeutic potential. However, given the broad physiological importance of NMDARs, modulating their activity often has detrimental side effects precluding pharmaceutical use of many NMDAR modulators. One approach to possibly improve the therapeutic potential of NMDAR modulators is to identify compounds that modulate subsets of NMDARs. An obvious target for modulating NMDAR subsets is the many NMDAR subtypes produced through different combinations of NMDAR subunits. With seven identified genes that encode NMDAR subunits, there are many neuronal NMDAR subtypes with distinct properties and potentially differential pharmacological sensitivities. Study of NMDAR subtype-specific pharmacology is complicated in neurons, however, because most neurons express at least three NMDAR subtypes. Thus, use of an approach that permits study in isolation of a single receptor subtype is preferred. Additionally, the effects of drugs on agonist-activated responses typically depend on duration of agonist exposure. To evaluate drug effects on synaptic transmission, an approach should be used that allows for activation of receptor responses as brief as those observed during synaptic transmission, both in the absence and presence of drug. To address these issues, we designed a fast perfusion system capable of (1) delivering brief (~5 ms) and consistent applications of glutamate to recombinant NMDARs of known subunit composition, and (2) easily and quickly (~5 s) changing between glutamate applications in the absence and presence of drug.


Asunto(s)
Evaluación Preclínica de Medicamentos/instrumentación , Ácido Glutámico/metabolismo , Técnicas de Placa-Clamp/instrumentación , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Diseño de Equipo , Humanos , Técnicas de Placa-Clamp/métodos , Perfusión/instrumentación , Perfusión/métodos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transfección/métodos
10.
J Neurosci ; 33(9): 4140-50, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447622

RESUMEN

NMDA receptor (NMDAR)-mediated currents depend on membrane depolarization to relieve powerful voltage-dependent NMDAR channel block by external magnesium (Mg(o)(2+)). Mg(o)(2+) unblock from native NMDARs exhibits a fast component that is consistent with rapid Mg(o)(2+) -unbinding kinetics and also a slower, millisecond time scale component (slow Mg(o)(2+) unblock). In recombinant NMDARs, slow Mg(o)(2+) unblock is prominent in GluN1/2A (an NMDAR subtype composed of GluN1 and GluN2A subunits) and GluN1/2B receptors, with slower kinetics observed for GluN1/2B receptors, but absent from GluN1/2C and GluN1/2D receptors. Slow Mg(o)(2+) unblock from GluN1/2B receptors results from inherent voltage-dependent gating, which increases channel open probability with depolarization. Here we examine the mechanisms responsible for NMDAR subtype dependence of slow Mg(o)(2+) unblock. We demonstrate that slow Mg(o)(2+) unblock from GluN1/2A receptors, like GluN1/2B receptors, results from inherent voltage-dependent gating. Surprisingly, GluN1/2A and GluN1/2B receptors exhibited equal inherent voltage dependence; faster Mg(o)(2+) unblock from GluN1/2A receptors can be explained by voltage-independent differences in gating kinetics. To investigate the absence of slow Mg(o)(2+) unblock in GluN1/2C and GluN1/2D receptors, we examined the GluN2 S/L site, a site responsible for several NMDAR subtype-dependent channel properties. Mutating the GluN2 S/L site of GluN2A subunits from serine (found in GluN2A and GluN2B subunits) to leucine (found in GluN2C and GluN2D) greatly diminished both voltage-dependent gating and slow Mg(o)(2+) unblock. Therefore, the residue at the GluN2 S/L site governs the expression of both slow Mg(o)(2+) unblock and inherent voltage dependence.


Asunto(s)
Fenómenos Biofísicos/fisiología , Activación del Canal Iónico/fisiología , Magnesio/metabolismo , Potenciales de la Membrana/fisiología , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Biofisica , Ácido Glutámico/farmacología , Glicina/farmacología , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Modelos Biológicos , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Conformación Proteica/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...