Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(11): 4309-4313, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31867820

RESUMEN

Mass spectrometry (MS) can reliably detect and localize all mass-altering modifications of ribonucleic acids (RNA), but current MS approaches that allow for simultaneous de novo sequencing and modification analysis generally require specialized instrumentation. Here we report a novel RNA dissociation technique, radical transfer dissociation (RTD), that can be used for the comprehensive de novo characterization of ribonucleic acids and their posttranscriptional or synthetic modifications. We demonstrate full sequence coverage for RNA consisting of up to 39 nucleotides and show that RTD is especially useful for RNA with highly labile modifications such as 5-hydroxymethylcytidine and 5-formylcytidine.


Asunto(s)
Nucleótidos/química , ARN/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Bases , Sitios de Unión , Cobalto/química , Citidina/análogos & derivados , Citidina/química , Estabilidad del ARN
2.
Nucleic Acids Res ; 45(13): 8014-8025, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28549193

RESUMEN

Nucleobase methylations are ubiquitous posttranscriptional modifications of ribonucleic acids (RNA) that can substantially increase the structural diversity of RNA in a highly dynamic fashion with implications for gene expression and human disease. However, high throughput, deep sequencing does not generally provide information on posttranscriptional modifications (PTMs). A promising alternative approach for the characterization of PTMs, i.e. their identification, localization, and relative quantitation, is top-down mass spectrometry (MS). In this study, we have investigated how specific nucleobase methylations affect RNA ionization in electrospray ionization (ESI), and backbone cleavage in collisionally activated dissociation (CAD) and electron detachment dissociation (EDD). For this purpose, we have developed two new approaches for the characterization of RNA methylations in mixtures of either isomers of RNA or nonisomeric RNA forms. Fragment ions from dissociation experiments were analyzed to identify the modification type, to localize the modification sites, and to reveal the site-specific, relative extent of modification for each site.


Asunto(s)
ARN/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Adenosina/análogos & derivados , Adenosina/análisis , Adenosina/química , Secuencia de Bases , Citidina/análogos & derivados , Citidina/análisis , Citidina/química , Iones , Metilación , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Uridina/análogos & derivados , Uridina/análisis , Uridina/química
3.
Nucleic Acids Res ; 44(2): 852-62, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26578598

RESUMEN

Nucleotide modifications within RNA transcripts are found in every organism in all three domains of life. 6-methyladeonsine (m(6)A), 5-methylcytosine (m(5)C) and pseudouridine (Ψ) are highly abundant nucleotide modifications in coding sequences of eukaryal mRNAs, while m(5)C and m(6)A modifications have also been discovered in archaeal and bacterial mRNAs. Employing in vitro translation assays, we systematically investigated the influence of nucleotide modifications on translation. We introduced m(5)C, m(6)A, Ψ or 2'-O-methylated nucleotides at each of the three positions within a codon of the bacterial ErmCL mRNA and analyzed their influence on translation. Depending on the respective nucleotide modification, as well as its position within a codon, protein synthesis remained either unaffected or was prematurely terminated at the modification site, resulting in reduced amounts of the full-length peptide. In the latter case, toeprint analysis of ribosomal complexes was consistent with stalling of translation at the modified codon. When multiple nucleotide modifications were introduced within one codon, an additive inhibitory effect on translation was observed. We also identified the m(5)C modification to alter the amino acid identity of the corresponding codon, when positioned at the second codon position. Our results suggest a novel mode of gene regulation by nucleotide modifications in bacterial mRNAs.


Asunto(s)
Adenosina/análogos & derivados , Seudouridina/genética , ARN Bacteriano/genética , ARN Mensajero/genética , 5-Metilcitosina/metabolismo , Adenosina/genética , Adenosina/metabolismo , Codón , Escherichia coli/genética , Metiltransferasas/genética , Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN/química , ARN/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo
4.
Nucleic Acids Res ; 43(10): 5171-81, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25904631

RESUMEN

Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.


Asunto(s)
División del ARN , ARN/química , Enlace de Hidrógeno , Iones/química , Protones , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA