Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-35997588

RESUMEN

MHCY is a second major histocompatibility complex-like gene region in chickens originally identified by the presence of major histocompatibility complex class I-like and class II-like gene sequences. Up to now, the MHCY gene region has been poorly represented in genomic sequence data. A high density of repetitive sequence and multiple members of several gene families prevented the accurate assembly of short-read sequence data for MHCY. Identified here by single-molecule real-time sequencing sequencing of BAC clones for the Gallus gallus Red Jungle Fowl reference genome are 107 MHCY region genes (45 major histocompatibility complex class I-like, 41 c-type-lectin-like, 8 major histocompatibility complex class IIß, 8 LENG9-like, 4 zinc finger protein loci, and a single only zinc finger-like locus) located amid hundreds of retroelements within 4 contigs representing the region. Sequences obtained for nearby ribosomal RNA genes have allowed MHCY to be precisely mapped with respect to the nucleolar organizer region. Gene sequences provide insights into the unusual structure of the MHCY class I molecules. The MHCY class I loci are polymorphic and group into 22 types based on predicted amino acid sequences. Some MHCY class I loci are full-length major histocompatibility complex class I genes. Others with altered gene structure are considered gene candidates. The amino acid side chains at many of the polymorphic positions in MHCY class I are directed away rather than into the antigen-binding groove as is typical of peptide-binding major histocompatibility complex class I molecules. Identical and nearly identical blocks of genomic sequence contribute to the observed multiplicity of identical MHCY genes and the large size (>639 kb) of the Red Jungle Fowl MHCY haplotype. Multiple points of hybridization observed in fluorescence in situ hybridization suggest that the Red Jungle Fowl MHCY haplotype is made up of linked, but physically separated genomic segments. The unusual gene content, the evidence of highly similar duplicated segments, and additional evidence of variation in haplotype size distinguish polymorphic MHCY from classical polymorphic major histocompatibility complex regions.


Asunto(s)
Pollos , Genes MHC Clase I , Animales , Pollos/genética , Haplotipos , Elementos Transponibles de ADN , Hibridación Fluorescente in Situ , Lectinas Tipo C/genética
2.
Cell Rep ; 39(3): 110728, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443184

RESUMEN

Regulatory B cells (Bregs) suppress immune responses through the secretion of interleukin-10 (IL-10). This immunomodulatory capacity holds therapeutic potential, yet a definitional immunophenotype for enumeration and prospective isolation of B cells capable of IL-10 production remains elusive. Here, we simultaneously quantify cytokine production and immunophenotype in human peripheral B cells across a range of stimulatory conditions and time points using mass cytometry. Our analysis shows that multiple functional B cell subsets produce IL-10 and that no phenotype uniquely identifies IL-10+ B cells. Further, a significant portion of IL-10+ B cells co-express the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNFα). Despite this heterogeneity, operationally tolerant liver transplant recipients have a unique enrichment of IL-10+, but not TNFα+ or IL-6+, B cells compared with transplant recipients receiving immunosuppression. Thus, human IL-10-producing B cells constitute an induced, transient state arising from a diversity of B cell subsets that may contribute to maintenance of immune homeostasis.


Asunto(s)
Linfocitos B Reguladores , Interleucina-10/biosíntesis , Citocinas , Humanos , Tolerancia Inmunológica , Interleucina-10/genética , Interleucina-6 , Factor de Necrosis Tumoral alfa
3.
Genes (Basel) ; 12(10)2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34681024

RESUMEN

The avian α-herpesvirus known as Marek's disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek's disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of 'MDV telomere-integrated only', and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32-50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51-62 dpi) and establish metastatic lymphomas.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Linfoma/genética , Enfermedad de Marek/genética , Enfermedades de las Aves de Corral/genética , Animales , Carcinogénesis/genética , Pollos/genética , Pollos/virología , Herpesvirus Gallináceo 2/patogenicidad , Interacciones Huésped-Patógeno/genética , Hibridación Fluorescente in Situ , Linfoma/etiología , Linfoma/patología , Linfoma/virología , Enfermedad de Marek/complicaciones , Enfermedad de Marek/patología , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Neoplasias del Bazo/etiología , Neoplasias del Bazo/genética , Neoplasias del Bazo/patología , Linfocitos T/virología , Telómero/genética , Telómero/virología , Integración Viral/genética
4.
Immunity ; 53(1): 217-232.e5, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668225

RESUMEN

B cells are capable of a wide range of effector functions including antibody secretion, antigen presentation, cytokine production, and generation of immunological memory. A consistent strategy for classifying human B cells by using surface molecules is essential to harness this functional diversity for clinical translation. We developed a highly multiplexed screen to quantify the co-expression of 351 surface molecules on millions of human B cells. We identified differentially expressed molecules and aligned their variance with isotype usage, VDJ sequence, metabolic profile, biosynthesis activity, and signaling response. Based on these analyses, we propose a classification scheme to segregate B cells from four lymphoid tissues into twelve unique subsets, including a CD45RB+CD27- early memory population, a class-switched CD39+ tonsil-resident population, and a CD19hiCD11c+ memory population that potently responds to immune activation. This classification framework and underlying datasets provide a resource for further investigations of human B cell identity and function.


Asunto(s)
Subgrupos de Linfocitos B/clasificación , Subgrupos de Linfocitos B/inmunología , Isotipos de Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , 5'-Nucleotidasa/metabolismo , Apirasa/metabolismo , Antígeno CD11c/metabolismo , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Memoria Inmunológica/inmunología , Antígenos Comunes de Leucocito/metabolismo , Persona de Mediana Edad , Transducción de Señal/inmunología , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...