Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3200, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331993

RESUMEN

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Asunto(s)
Proteínas SNARE , Vesículas Secretoras , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Lisosomas/metabolismo
2.
FEBS J ; 288(1): 190-211, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32248620

RESUMEN

Warburg micro syndrome (WMS) is a hereditary autosomal neuromuscular disorder in humans caused by mutations in Rab18, Rab3GAP1, or Rab3GAP2 genes. Rab3GAP1/2 forms a heterodimeric complex, which acts as a guanosine nucleotide exchange factor and activates Rab18. Although the genetic causes of WMS are known, it is still unclear whether loss of the Rab3GAP-Rab18 module affects neuronal or muscle cell physiology or both, and how. In this work, we characterize a Rab3GAP2 mutant Drosophila line to establish a novel animal model for WMS. Similarly to symptoms of WMS, loss of Rab3GAP2 leads to highly decreased motility in Drosophila that becomes more serious with age. We demonstrate that these mutant flies are defective for autophagic degradation in multiple tissues including fat cells and muscles. Loss of Rab3GAP-Rab18 module members leads to perturbed autolysosome morphology due to destabilization of Rab7-positive autophagosomal and late endosomal compartments and perturbation of lysosomal biosynthetic transport. Importantly, overexpression of UVRAG or loss of Atg14, two alternative subunits of the Vps34/PI3K (vacuole protein sorting 34/phosphatidylinositol 3-kinase) complexes in fat cells, mimics the autophagic phenotype of Rab3GAP-Rab18 module loss. We find that GTP-bound Rab18 binds to Atg6/Beclin1, a permanent subunit of Vps34 complexes. Finally, we show that Rab3GAP2 and Rab18 are present on autophagosomal and autolysosomal membranes and colocalize with Vps34 Complex I subunits. Our data suggest that the Rab3GAP-Rab18 module regulates autolysosomal maturation through its interaction with the Vps34 Complex I, and perturbed autophagy due to loss of the Rab3GAP-Rab18 module may contribute to the development of WMS.


Asunto(s)
Anomalías Múltiples/genética , Catarata/congénito , Fosfatidilinositol 3-Quinasas Clase III/genética , Córnea/anomalías , Proteínas de Drosophila/genética , Hipogonadismo/genética , Discapacidad Intelectual/genética , Lisosomas/metabolismo , Microcefalia/genética , Atrofia Óptica/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab3/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patología , Fosfatidilinositol 3-Quinasas Clase III/deficiencia , Córnea/metabolismo , Córnea/patología , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Lisosomas/patología , Microcefalia/metabolismo , Microcefalia/patología , Músculos/metabolismo , Músculos/patología , Neuronas/metabolismo , Neuronas/patología , Atrofia Óptica/metabolismo , Atrofia Óptica/patología , Unión Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al GTP rab/deficiencia , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/deficiencia , Proteínas de Unión a GTP rab7
3.
Biochemistry ; 57(28): 4186-4196, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29928795

RESUMEN

The nonreceptor tyrosine kinase Src is a central component of the epidermal growth factor (EGF) signaling pathway. Our group recently showed that the Frank-ter Haar syndrome protein Tks4 (tyrosine kinase substrate with four Src homology 3 domains) is also involved in EGF signaling. Here we demonstrate that Tks4 and Src bind directly to each other and elucidate the details of the molecular mechanism of this complex formation. Results of GST pull-down and fluorescence polarization assays show that both a proline-rich SH3 binding motif (PSRPLPDAP, residues 466-474) and an adjacent phosphotyrosine-containing SH2 binding motif (pYEEI, residues 508-511) in Tks4 are responsible for Src binding. These motifs interact with the SH3 and SH2 domains of Src, respectively, leading to a synergistic enhancement of binding strength and a highly stable, "bidentate"-type of interaction. In agreement with these results, we found that the association of Src with Tks4 is permanent and the complex lasts at least 3 h in living cells. We conclude that the interaction of Tks4 with Src may result in the long term stabilization of the kinase in its active conformation, leading to prolonged Src activity following EGF stimulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Dominios Homologos src , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Familia-src Quinasas/química
4.
PLoS Genet ; 14(4): e1007359, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29694367

RESUMEN

The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process.


Asunto(s)
Autofagosomas/fisiología , Proteínas de Drosophila/fisiología , Lisosomas/fisiología , Fusión de Membrana/fisiología , Proteínas R-SNARE/fisiología , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Fusión de Membrana/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/fisiología
5.
J Cell Biol ; 216(7): 1937-1947, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28483915

RESUMEN

Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes.


Asunto(s)
Autofagosomas/enzimología , Autofagia , Neoplasias de la Mama/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Endocitosis , Endosomas/enzimología , Lisosomas/enzimología , Proteína de Unión al GTP rab2/metabolismo , Animales , Animales Modificados Genéticamente , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Humanos , Fusión de Membrana , Proteolisis , Interferencia de ARN , Transducción de Señal , Transfección , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rab2/genética , Proteínas de Unión a GTP rab7
6.
Proc Natl Acad Sci U S A ; 112(9): 2711-6, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730857

RESUMEN

Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/química , Complejos Multienzimáticos/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Dominio Catalítico , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
7.
EMBO J ; 33(16): 1784-801, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24975362

RESUMEN

Mitogen-activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular-signal-regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three-tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain-mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63-linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5-ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3-ERK5-dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5-MAPK module and human muscle cell differentiation.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/metabolismo , MAP Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 3/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Ubiquitina/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN , Activación Enzimática , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , MAP Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 2 , MAP Quinasa Quinasa Quinasa 3/genética , Quinasas Quinasa Quinasa PAM/genética , Factores de Transcripción MEF2/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Mioblastos/citología , Mioblastos/metabolismo , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Ubiquitinación , Proteína Inhibidora de la Apoptosis Ligada a X/genética
8.
Mol Cell Oncol ; 1(4): e969170, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27308375

RESUMEN

Recently, we revealed that ubiquitination of MEKK2 and MEKK3 by inhibitor of apoptosis proteins (IAPs) directly disrupts MEK5/ERK5 interaction and subsequently attenuates ERK5 activation. In addition, loss of XIAP promotes human myogenic differentiation in an ERK5-dependent manner. These results reveal another layer of MAPK regulation and a novel role for XIAP in controlling myogenic differentiation.

9.
J Biol Chem ; 288(12): 8596-8609, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23382384

RESUMEN

Mitogen-activated protein kinase (MAPK) activation depends on a linear binding motif found in all MAPK kinases (MKK). In addition, the PB1 (Phox and Bem1) domain of MKK5 is required for extracellular signal regulated kinase 5 (ERK5) activation. We present the crystal structure of ERK5 in complex with an MKK5 construct comprised of the PB1 domain and the linear binding motif. We show that ERK5 has distinct protein-protein interaction surfaces compared with ERK2, which is the closest ERK5 paralog. The two MAPKs have characteristically different physiological functions and their distinct protein-protein interaction surface topography enables them to bind different sets of activators and substrates. Structural and biochemical characterization revealed that the MKK5 PB1 domain cooperates with the MAPK binding linear motif to achieve substrate specific binding, and it also enables co-recruitment of the upstream activating enzyme and the downstream substrate into one signaling competent complex. Studies on present day MAPKs and MKKs hint on the way protein kinase networks may evolve. In particular, they suggest how paralogous enzymes with similar catalytic properties could acquire novel signaling roles by merely changing the way they make physical links to other proteins.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/química , Modelos Moleculares , Secuencia de Aminoácidos , Apoenzimas/química , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Células HEK293 , Humanos , MAP Quinasa Quinasa 5/química , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/química , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...