Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 11(9): 8387-91, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097590

RESUMEN

Amorphous aluminium oxide coatings were processed by metalorganic chemical vapour deposition (MOCVD); their structural characteristics were determined as a function of the processing conditions, the process was modelled considering appropriate chemical kinetic schemes, and the properties of the obtained material were investigated and were correlated with the nanostructure of the coatings. With increasing processing temperature in the range 350 degrees C-700 degrees C, subatmospheric MOCVD of alumina from aluminium tri-isopropoxide (ATI) sequentially yields partially hydroxylated amorphous aluminium oxides, amorphous Al2O3 (415 degrees C-650 degrees C) and nanostructured gamma-Al2O3 films. A numerical model for the process allowed reproducing the non uniformity of deposition rate along the substrate zone due to the depletion of ATI. The hardness of the coatings prepared at 350 degrees C, 480 degrees C and 700 degrees C is 6 GPa, 11 GPa and 1 GPa, respectively. Scratch tests on films grown on TA6V titanium alloy reveal adhesive and cohesive failures for the amorphous and nanocrystalline ones, respectively. Alumina coating processed at 480 degrees C on TA6V yielded zero weight gain after oxidation at 600 degrees C in lab air. The surface of such low temperature processed amorphous films is hydrophobic (water contact angle 106 degrees), while the high temperature processed nanocrystalline films are hydrophilic (48 degrees at a deposition temperature of 700 degrees C). It is concluded that amorphous Al2O3 coatings can be used as oxidation and corrosion barriers at ambient or moderate temperature. Nanostructured with Pt or Ag nanoparticles, they can also provide anti-fouling or catalytic surfaces.

2.
J Mater Sci Mater Med ; 18(10): 2075-83, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17562134

RESUMEN

This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO(2) by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5.10(4) min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO(2) exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method.


Asunto(s)
Colágeno/metabolismo , Colágeno/farmacología , Geles/metabolismo , Ensayo de Materiales , Titanio/química , Tampones (Química) , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Materiales Biocompatibles Revestidos/farmacología , Colágeno/química , Humanos , Propiedades de Superficie , Andamios del Tejido/química , Titanio/metabolismo , Titanio/farmacología , Volatilización
3.
Inorg Chem ; 35(25): 7384-7393, 1996 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-11666933

RESUMEN

The first pentanuclear complexes of formula {Dy[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (1), {Ho[Cu(apox)][Cu(apox)(H(2)O)](3)}[PF(6)](3).4.5H(2)O (2), {Gd[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (3) and {Gd[Cu(apox)][Cu(apox) (H(2)O)](3)}[PF(6)](3).4.5H(2)O (4) (H(2)apox = N,N'-bis(3-aminopropyl)oxamide) have been synthesized. The crystal structures of complexes 1 and 2 have been determined by X-ray diffraction methods. Complexes 3 and 4 are isostructural with 1 and 2, respectively. Crystallographic data are as follows: 1 and 3, monoclinic, space group C2/c and Z = 4, with a = 14.646(6) Å, b = 29.496(7) Å, c = 16.002(7) Å, and beta = 111.76(2) degrees for 1 and a = 14.523(6) Å, b = 29.441(6) Å, c = 15.925(8) Å, and beta = 111.90(4) degrees for 3; 2 and 4, triclinic, P&onemacr;, and Z = 2, with a = 14.346(2) Å, b = 14.454(2) Å, c = 18.107(4) Å, alpha = 90.95(2) degrees, beta = 110.75(2) degrees, and gamma = 106.77(2) degrees for 2 and a = 14.365(6) Å, b = 14.496(5) Å, c = 18.172(7) Å, alpha = 91.27(3) degrees, beta = 110.74(3) degrees, and gamma = 106.67(3) degrees for 4. A tripositive ion is present in these structures, the electroneutrality being achieved by three uncoordinated perchlorate (1) or hexafluorophosphate (2) anions. The lanthanide cations are eight-coordinate with a pseudo-square-antiprismatic environment formed by carbonyl oxygen atoms from two [Cu(apox)] and two Cu(apox)(H(2)O)] (1) and one [Cu(apox)] and three [Cu(apox)(H(2)O)] (2) bidentate ligands. The temperature dependence of the magnetic susceptibility of complexes 1-4 was investigated in the range 1.8-300 K. The ligand-field effect, as well as the mixing of the free-ion states in Dy(III) and Ho(III), make extremely difficult the analysis of the overall antiferromagnetic interaction which is observed for complexes 1 and 2. The magnetic susceptibility data for complexes 3 and 4 have shown that the ground-state spin for the [Gd(III)Cu(II)(4)] unit is S = 11/2, the Gd(III)-Cu(II) interaction being ferromagnetic with an interaction parameter J(GdCu) = 0.85 cm(-)(1) (the interaction Hamiltonian is of the form H = -JS(A).S(B)). The field dependence of the magnetization at 2 K of 3 and 4 confirms the nature of the ground state and of the Gd(III)-Cu(II) interaction. The influence of the topology and of the type of bridging ligand on the nature and magnitude of the magnetic interaction in the Gd(III)-Cu(II) pair is analyzed and discussed in light of available magnetostructural data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...