Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(4): 102621, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37776521

RESUMEN

Live mosquitoes are required to comprehensively study vector-borne diseases, including transmission. Traditional mosquito-rearing protocols are laborious and time consuming. Here, we present a protocol for assembling and implementing a partially automated system for rearing and handling Anopheles stephensi mosquitoes. We describe steps for assembling a pupation station, self-emptying bucket, pupal funnel and dish vacuum, automatic aspirator, and sugar tubes. We also detail the application of these systems, along with specific limitations.


Asunto(s)
Anopheles , Animales , Mosquitos Vectores
2.
Nat Commun ; 14(1): 5408, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669940

RESUMEN

Drugs targeting multiple stages of the Plasmodium vivax life cycle are needed to reduce the health and economic burdens caused by malaria worldwide. N-myristoyltransferase (NMT) is an essential eukaryotic enzyme and a validated drug target for combating malaria. However, previous PvNMT inhibitors have failed due to their low selectivity over human NMTs. Herein, we apply a structure-guided hybridization approach combining chemical moieties of previously reported NMT inhibitors to develop the next generation of PvNMT inhibitors. A high-resolution crystal structure of PvNMT bound to a representative selective hybrid compound reveals a unique binding site architecture that includes a selective conformation of a key tyrosine residue. The hybridized compounds significantly decrease P. falciparum blood-stage parasite load and consistently exhibit dose-dependent inhibition of P. vivax liver stage schizonts and hypnozoites. Our data demonstrate that hybridized NMT inhibitors can be multistage antimalarials, targeting dormant and developing forms of liver and blood stage.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Humanos , Animales , Plasmodium vivax , Esquizontes , Hígado , Aciltransferasas
3.
Cell Rep ; 36(5): 109489, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348141

RESUMEN

Both subunit and attenuated whole-sporozoite vaccination strategies against Plasmodium infection have shown promising initial results in malaria-naive westerners but less efficacy in malaria-exposed individuals in endemic areas. Here, we demonstrate proof of concept by using a rodent malaria model in which non-neutralizing antibodies (nNAbs) can directly interfere with protective anti-circumsporozoite protein (CSP) humoral responses. We characterize a monoclonal antibody, RAM1, against Plasmodium yoelii sporozoite major surface antigen CSP. Unlike the canonical PyCSP repeat domain binding and neutralizing antibody (NAb) 2F6, RAM1 does not inhibit sporozoite traversal or entry of hepatocytes in vitro or infection in vivo. Although 2F6 and RAM1 bind non-overlapping regions of the CSP-repeat domain, pre-treatment with RAM1 abrogates the capacity of NAb to block sporozoite traversal and invasion in vitro. Importantly, RAM1 reduces the efficacy of the polyclonal humoral response against PyCSP in vivo. Collectively, our data provide a proof of concept that nNAbs can alter the efficacy of malaria vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Inmunidad Humoral , Estadios del Ciclo de Vida , Hígado/parasitología , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Línea Celular , Epítopos/inmunología , Femenino , Cinética , Vacunas contra la Malaria/inmunología , Ratones Endogámicos BALB C , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Vacunas Sintéticas/inmunología
4.
Chem Rev ; 121(17): 10452-10468, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34197083

RESUMEN

Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Interacciones Huésped-Parásitos/efectos de los fármacos , Malaria/tratamiento farmacológico , Terapia Molecular Dirigida , Humanos , Malaria/parasitología
5.
Cell Chem Biol ; 28(12): 1679-1692.e4, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34216546

RESUMEN

Kinase inhibitors are promising drugs to stabilize the endothelial barrier following inflammatory damage. However, our limited knowledge of how kinase signaling activates barrier-restorative pathways and the complexity of multi-target drugs have hindered drug discovery and repurposing efforts. Here, we apply a kinase regression approach that exploits drug polypharmacology to investigate endothelial barrier regulation. A screen of 28 kinase inhibitors identified multiple inhibitors that promote endothelial barrier integrity and revealed divergent barrier phenotypes for BCR-ABL drugs. Target deconvolution predicted 50 barrier-regulating kinases from diverse kinase families. Using gene knockdowns, we identified kinases with a role in endothelial barrier regulation and dissected different mechanisms of action of barrier-protective kinase inhibitors. These results demonstrate the importance of polypharmacology in the endothelial barrier phenotype of kinase inhibitors and provide promising new leads for barrier-strengthening therapies.


Asunto(s)
Compuestos de Anilina/farmacología , Carbazoles/farmacología , Alcaloides Indólicos/farmacología , Nitrilos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Compuestos de Anilina/química , Carbazoles/química , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Alcaloides Indólicos/química , Nitrilos/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Polifarmacología , Inhibidores de Proteínas Quinasas/química , Quinolinas/química , Transducción de Señal/efectos de los fármacos
6.
Front Cell Infect Microbiol ; 11: 804186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111697

RESUMEN

Upon transmission to the human host, Plasmodium sporozoites exit the skin, are taken up by the blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte. Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging, particularly in vivo, and existing studies have been largely unable to consider how protein and phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using digital spatial profiling, we characterized changes in host signaling during Plasmodium yoelii infection in vivo without disrupting the liver tissue. Moreover, we measured alterations in protein expression around infected hepatocytes and identified a subset of CD163+ Kupffer cells that migrate towards infected cells during infection. These data offer the first insight into the heterogeneous microenvironment that surrounds the infected hepatocyte and provide insights into how the parasite may alter its milieu to influence its survival and modulate immunity.


Asunto(s)
Malaria , Plasmodium , Animales , Humanos , Hígado/parasitología , Malaria/parasitología , Proteómica , Esporozoítos
7.
Cell Death Differ ; 27(1): 44-54, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31065106

RESUMEN

The facets of host control during Plasmodium liver infection remain largely unknown. We find that the SLC7a11-GPX4 pathway, which has been associated with the production of reactive oxygen species, lipid peroxidation, and a form of cell death called ferroptosis, plays a critical role in control of Plasmodium liver stage infection. Specifically, blocking GPX4 or SLC7a11 dramatically reduces Plasmodium liver stage parasite infection. In contrast, blocking negative regulators of this pathway, NOX1 and TFR1, leads to an increase in liver stage infection. We have shown previously that increased levels of P53 reduces Plasmodium LS burden in an apoptosis-independent manner. Here, we demonstrate that increased P53 is unable to control parasite burden during NOX1 or TFR1 knockdown, or in the presence of ROS scavenging or when lipid peroxidation is blocked. Additionally, SLC7a11 inhibitors Erastin and Sorafenib reduce infection. Thus, blocking the host SLC7a11-GPX4 pathway serves to selectively elevate lipid peroxides in infected cells, which localize within the parasite and lead to the elimination of liver stage parasites.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Peroxidación de Lípido , Hepatopatías/metabolismo , Hepatopatías/parasitología , Malaria/metabolismo , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Animales , Línea Celular , Células Cultivadas , Ferroptosis , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 1/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Transferrina/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
8.
iScience ; 21: 603-611, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31731198

RESUMEN

The invasion of a suitable host hepatocyte by Plasmodium sporozoites is an essential step in malaria infection. We demonstrate that in infected hepatocytes, lysosomes are redistributed away from the nucleus, and surface exposure of lysosome-associated membrane protein 1 (LAMP1) is increased. Lysosome exocytosis in infected cells occurs independently of sporozoite traversal. Instead, a sporozoite-secreted factor is sufficient for the process. Knockdown of SNARE proteins involved in lysosome-plasma membrane fusion reduces lysosome exocytosis and Plasmodium infection. In contrast, promoting fusion between the lysosome and plasma membrane dramatically increases infection. Our work demonstrates parallels between Plasmodium sporozoite entry of hepatocytes and infection by the excavate pathogen Trypanosoma cruzi and raises the question of whether convergent evolution has shaped host cell invasion by divergent pathogens.

9.
Cell Rep ; 26(12): 3391-3399.e4, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893610

RESUMEN

Plasmodium parasites are highly selective when infecting hepatocytes and induce many changes within the host cell upon infection. While several host cell factors have been identified that are important for liver infection, our understanding of what facilitates the maintenance of infection remains incomplete. Here, we describe a role for phosphorylated ribosomal protein S6 (Ser235/236) (p-RPS6) in Plasmodium yoelii-infected hepatocytes. Blocking RPS6 phosphorylation prior to infection decreases the number of liver stage parasites within 24 h. Infected hepatocytes exhibit elevated levels of p-RPS6 while simultaneously abrogating the induction of phosphorylation of RPS6 in response to insulin stimulation. This is in contrast with the regulation of p-RPS6 by Toxoplasma gondii, which elevates levels of p-RPS6 after infection but does not alter the response to insulin. Our data support a model in which RPS6 phosphorylation is uncoupled from canonical regulators in Plasmodium-infected hepatocytes and is relied on by the parasite to maintain infection.


Asunto(s)
Hepatocitos/metabolismo , Malaria/metabolismo , Plasmodium yoelii/metabolismo , Proteína S6 Ribosómica/metabolismo , Animales , Línea Celular , Hepatocitos/parasitología , Hepatocitos/patología , Humanos , Malaria/patología , Ratones , Ratones Endogámicos BALB C , Fosforilación , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Toxoplasmosis/patología
10.
Trends Parasitol ; 34(10): 843-860, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30122551

RESUMEN

Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.


Asunto(s)
Antimaláricos/inmunología , Sistemas de Liberación de Medicamentos , Antimaláricos/farmacología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología
11.
Sci Rep ; 8(1): 8896, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891920

RESUMEN

Abscisic acid (ABA) is an ancient stress hormone and is detectable in a wide variety of organisms where it regulates innate immunity and inflammation. Previously, we showed that oral supplementation with ABA decreased parasitemia in a mouse model of malaria, decreased liver and spleen pathology and reduced parasite transmission to mosquitoes. Here, we report that higher circulating ABA levels were associated with a reduced risk of symptomatic malaria in a cohort of Plasmodium falciparum-infected Ugandan children. To understand possible mechanisms of ABA protection in malaria, we returned to our mouse model to show that ABA effects on Plasmodium yoelii 17XNL infection were accompanied by minimal effects on complete blood count and blood chemistry analytes, suggesting a benefit to host health. In addition, orally delivered ABA induced patterns of gene expression in mouse liver and spleen that suggested enhancement of host anti-parasite defenses. To test these inferences, we utilized passive immunization and knockout mice to demonstrate that ABA supplementation increases circulating levels of protective, parasite-specific IgG and requires caspase-1 to reduce parasitemia. Collectively, ABA induces host responses that ameliorate infection and disease in an animal model and suggest that further studies of ABA in the context of human malaria are warranted.


Asunto(s)
Ácido Abscísico/sangre , Caspasa 1/metabolismo , Inmunoglobulina G/inmunología , Malaria/inmunología , Ácidos , Animales , Enfermedades Asintomáticas , Niño , Preescolar , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Reguladores del Crecimiento de las Plantas , Plasmodium falciparum/inmunología , Plasmodium yoelii/inmunología , Uganda
12.
Microbes Infect ; 20(9-10): 484-492, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29408537

RESUMEN

Few biological molecules have as far reaching and dynamic effects as abscisic acid (ABA). In this review, we draw together the often segregated fields of plant, animal, and human biology to highlight ABA biosynthesis, signaling and physiological effects with examples of host-pathogen interactions to emphasize the cross-kingdom biology of this ancient signaling molecule.


Asunto(s)
Ácido Abscísico/fisiología , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/biosíntesis , Ácido Abscísico/química , Ácido Abscísico/farmacología , Animales , Interacciones Huésped-Patógeno , Humanos , Inmunidad/efectos de los fármacos , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos
13.
Parasit Vectors ; 10(1): 333, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28705245

RESUMEN

BACKGROUND: Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. RESULTS: Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-ß-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. CONCLUSIONS: ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment.


Asunto(s)
Ácido Abscísico/metabolismo , Anopheles/parasitología , FN-kappa B/metabolismo , Plasmodium falciparum/inmunología , Transducción de Señal , Animales , Anopheles/efectos de los fármacos , Anopheles/inmunología , Anopheles/fisiología , Supervivencia Celular , Fertilidad/efectos de los fármacos , Inmunidad Innata , Longevidad/efectos de los fármacos , Ratones , Plasmodium falciparum/fisiología
14.
Am J Trop Med Hyg ; 94(6): 1266-75, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27001761

RESUMEN

Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation.


Asunto(s)
Ácido Abscísico/administración & dosificación , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Ácido Abscísico/sangre , Animales , Anopheles/parasitología , Suplementos Dietéticos , Femenino , Malaria/parasitología , Ratones , Parasitemia/tratamiento farmacológico , Plasmodium yoelii
15.
Parasit Vectors ; 8: 424, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26283222

RESUMEN

BACKGROUND: Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. METHODS: A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. RESULTS: The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission. CONCLUSIONS: These observations suggest that, as in mammals, innate immunity and mitochondrial responses are integrated in mosquitoes and that AsP38 MAPK-dependent signaling facilitates mosquito survival during parasite infection, a fact that may attest to the relatively longer evolutionary relationship of these parasites with their invertebrate compared to their vertebrate hosts. On a practical level, improved understanding of the balances and trade-offs between resistance and metabolism could be leveraged to generate fit, resistant mosquitoes for malaria control.


Asunto(s)
Anopheles/inmunología , Metabolismo Energético , Inmunidad Innata , Plasmodium falciparum/inmunología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Anopheles/metabolismo , Perfilación de la Expresión Génica , Estrés Oxidativo , Proteoma/análisis , Especies Reactivas de Oxígeno/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Supervivencia
16.
PLoS Pathog ; 10(6): e1004231, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24968248

RESUMEN

Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.


Asunto(s)
Anopheles/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Animales , Anopheles/crecimiento & desarrollo , Anopheles/metabolismo , Anopheles/parasitología , Control de Enfermedades Transmisibles , Femenino , Homeostasis/efectos de los fármacos , Hormesis , Humanos , Proteínas de Insectos/metabolismo , Insectos Vectores/efectos de los fármacos , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/metabolismo , Insectos Vectores/parasitología , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/genética , Mucosa Intestinal/metabolismo , Longevidad/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...