Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2004: 197-208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147919

RESUMEN

Cohesin and other members of the structural maintenance of chromosomes (SMC)-kleisin family such as condensin and Smc5-6, as well as central players in genome function and structure such as topoisomerases, DNA and RNA polymerases, and DNA repair enzymes contain nucleotide binding domains (NBD) which bind and eventually cleave ATP. The released energy is harnessed in various ways by these enzymes in order to fulfill their essential functions. However, unlike other enzymes, Smc-kleisin complexes-well sized, elongated and multisubunit in nature-have only recently been purified as holocomplexes. This progress offers both the opportunity and the challenge to determine in detail the potency of the ATPase activity of these large protein assemblies-typically exceeding 0.5 MDa in molecular weight-and examine its mechanistic features. We describe here in further detail a combined comprehensive protocol which we have successfully employed before for assaying the ATPase activity of recombinant budding yeast cohesin holocomplexes. We believe that with small and appropriate modifications the methods described here should be applicable to other ATPase complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Células Cultivadas , Cromosomas Fúngicos/genética , Proteínas Fúngicas/metabolismo , Insectos/metabolismo , Saccharomycetales/metabolismo , Cohesinas
2.
Mol Cell ; 70(6): 1134-1148.e7, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932904

RESUMEN

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
3.
Curr Biol ; 28(10): R612-R614, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29787727

RESUMEN

Cohesin and condensin are Smc-kleisin complexes responsible for shaping our chromosomes. Despite extensive genetic and genomic information available on their function, their biochemistry has been hard to study. Two recent studies finally bring exciting new insights into their enzymology.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , Cromosomas , ADN , Cohesinas
4.
Cell ; 173(6): 1508-1519.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29754816

RESUMEN

As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromátides/química , Proteínas Cromosómicas no Histona/química , ADN/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Cromatina/química , Humanos , Hidrólisis , Lisina/química , Ratones , Mutación , Proteínas Nucleares/genética , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
5.
Methods Mol Biol ; 1764: 123-132, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605912

RESUMEN

The focus of modern molecular biology on protein structure and function has reached unparalleled levels. Whether interacting with nucleic acids or other proteins, protein contacts are the basis for fine-tuning all cellular processes. It is for this reason imperative that protein interactions are studied in ways that reflect actual events taking place inside living cells.Here, we describe in detail a method that combines the residue-level resolution provided by structural biology with physiological studies inside living cells, with the overall goal of explaining the contribution of protein-protein interactions in cellular processes. We use as a powerful example our experience with the DNA exit gate interface of the chromosomal cohesin complex, and we argue that this methodology may be followed to address similar questions within any protein complex and in various model systems.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromatina/química , Proteínas Cromosómicas no Histona/química , Cromosomas Fúngicos , Reactivos de Enlaces Cruzados/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
6.
Curr Biol ; 28(2): R77-R79, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29374450

RESUMEN

Chromosomes are shaped by the combined function of the condensin and cohesin Smc-kleisin complexes. After more than two decades of research in this field, a new study finally sheds light on how these machines might interact with their DNA substrates.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona , Cromosomas , ADN , Complejos Multiproteicos
7.
Curr Biol ; 27(1): R17-R18, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28073014

RESUMEN

Mitotic chromosome condensation, sister chromatid cohesion, and higher order folding of interphase chromatin are mediated by condensin and cohesin, eukaryotic members of the SMC (structural maintenance of chromosomes)-kleisin protein family. Other members facilitate chromosome segregation in bacteria [1]. A hallmark of these complexes is the binding of the two ends of a kleisin subunit to the apices of V-shaped Smc dimers, creating a tripartite ring capable of entrapping DNA (Figure 1A). In addition to creating rings, kleisins recruit regulatory subunits. One family of regulators, namely Kite dimers (Kleisin interacting winged-helix tandem elements), interact with Smc-kleisin rings from bacteria, archaea and the eukaryotic Smc5-6 complex, but not with either condensin or cohesin [2]. These instead possess proteins containing HEAT (Huntingtin/EF3/PP2A/Tor1) repeat domains whose origin and distribution have not yet been characterized. Using a combination of profile Hidden Markov Model (HMM)-based homology searches, network analysis and structural alignments, we identify a common origin for these regulators, for which we propose the name Hawks, i.e. HEAT proteins associated with kleisins.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Eucariontes/metabolismo , Evolución Molecular , Mitosis , Complejos Multiproteicos/metabolismo , Segregación Cromosómica , Cadenas de Markov , Cohesinas
8.
Science ; 346(6212): 963-7, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25414305

RESUMEN

Through their association with a kleisin subunit (Scc1), cohesin's Smc1 and Smc3 subunits are thought to form tripartite rings that mediate sister chromatid cohesion. Unlike the structure of Smc1/Smc3 and Smc1/Scc1 interfaces, that of Smc3/Scc1 is not known. Disconnection of this interface is thought to release cohesin from chromosomes in a process regulated by acetylation. We show here that the N-terminal domain of yeast Scc1 contains two α helices, forming a four-helix bundle with the coiled coil emerging from Smc3's adenosine triphosphatase head. Mutations affecting this interaction compromise cohesin's association with chromosomes. The interface is far from Smc3 residues, whose acetylation prevents cohesin's dissociation from chromosomes. Cohesin complexes holding chromatids together in vivo do indeed have the configuration of hetero-trimeric rings, and sister DNAs are entrapped within these.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Secuencia Conservada , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , ADN/química , Mutación , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA